This paper focuses on designing a power allocation strategy for a fuel cell ship. The performance of the fuel cell varies during operation, so a power allocation strategy considering fuel cell performance differences is proposed, which consists of two layers. In the first layer, the maximum power and maximum efficiency of each fuel cell system (FCS) are updated in real-time with an online parameter identification model, which is composed of the fuel cell semi-empirical model and adaptive Kalman filter.
View Article and Find Full Text PDFDown syndrome (DS) is caused by the trisomy of human chromosome 21 (HSA21). A major challenge in DS research is to identify the HSA21 genes that cause specific symptoms. Down syndrome cell adhesion molecule (DSCAM) is encoded by a HSA21 gene.
View Article and Find Full Text PDFAnimals' response to a stimulus in one sensory modality is usually influenced by other modalities. One important type of multisensory integration is the cross-modal modulation, in which one sensory modality modulates (typically inhibits) another. Identification of the mechanisms underlying cross-modal modulations is crucial for understanding how sensory inputs shape animals' perception and for understanding sensory processing disorders.
View Article and Find Full Text PDFSensory stimuli with graded intensities often lead to yes-or-no decisions on whether to respond to the stimuli. How this graded-to-binary conversion is implemented in the central nervous system (CNS) remains poorly understood. Here, we show that graded encodings of noxious stimuli are categorized in a decision-associated CNS region in Drosophila larvae, and then decoded by a group of peptidergic neurons for executing binary escape decisions.
View Article and Find Full Text PDFDefining the relationship between maternal care, sensory development and brain gene expression in neonates is important to understand the impact of environmental challenges during sensitive periods in early life. In this study, we used a selection approach to test the hypothesis that variation in maternal licking and grooming (LG) during the first week of life influences sensory development in Wistar rat pups. We tracked the onset of the auditory brainstem response (ABR), the timing of eye opening (EO), middle ear development with micro-CT X-ray tomography, and used qRT-PCR to monitor changes in gene expression of the hypoxia-sensitive pathway and neurotrophin signaling in pups reared by low-LG or high-LG dams.
View Article and Find Full Text PDFA frameshift mutation in () was recently found from a rare human disorder with peripheral neurological conditions including hypotonia and areflexia. The YPEL gene family is highly conserved from yeast to human, but its members' functions are poorly defined. Moreover, the pathogenicity of the human variant is completely unknown.
View Article and Find Full Text PDFLignin is a phenylpropanoid-derived polymer that functions as a major component of cell walls in plant vascular tissues. Biosynthesis of the aromatic amino acid Phe provides precursors for many secondary metabolites, including lignins and flavonoids. Here, we discovered that MYB transcription factors MYB20, MYB42, MYB43, and MYB85 are transcriptional regulators that directly activate lignin biosynthesis genes and Phe biosynthesis genes during secondary wall formation in Arabidopsis ().
View Article and Find Full Text PDFFlavonoids are major secondary metabolites derived from the plant phenylpropanoid pathway that play important roles in plant development and also have benefits for human health. So-called MBW ternary complexes involving R2R3-MYB and basic helix-loop-helix (bHLH) transcription factors along with WD-repeat proteins have been reported to regulate expression of the biosynthetic genes in the flavonoid pathway. MYB4 and its closest homolog MYB7 have been suggested to function as repressors of phenylpropanoid metabolism.
View Article and Find Full Text PDFSomatostatin (SST)-positive interneurons in the anterior cingulate cortex (ACC) play important roles in neuronal diseases, memory and cognitive functions. However, their development in the ACC remains unclear. Using postnatal day 3 (P3) to P45 GIN mice, we found that most of the intrinsic membrane properties of SST interneurons in the ACC were developmentally mature after the second postnatal week and that the development of these neurons differed from that of parvalbumin (PV) interneurons in the prefrontal cortex.
View Article and Find Full Text PDFDefects in the function and development of GABAergic interneurons have been linked to psychiatric disorders, so preservation of these interneurons in brain slices is important for successful electrophysiological recording in various ex vivo methods. However, it is difficult to maintain the activity and morphology of neurons in slices from mice of >30 days old. Here we evaluated the N-methyl-D-glucamine (NMDG)-based artificial cerebrospinal fluid (aCSF) method for the preservation of interneurons in slices from mice of up to ∼6 months old and discussed the steps that may affect their quality during slicing.
View Article and Find Full Text PDF