Publications by authors named "Geng Leng"

Good quality of soil nitrogen data, which is essential for the advancement of both enhanced agricultural management and ecological environment, traditionally depends on labor intensive chemical procedures. Visible near-infrared (Vis-NIR) spectroscopy, acknowledged for its efficiency, environmental compatibility and rapidity, merges as a promising alternative. However, the effectiveness of Vis-NIR measurement models are significantly compromised by soil particle size distribution (PSD), presenting a substantial challenge in improving the measurement accuracy and reliability.

View Article and Find Full Text PDF

Herein, we report a computation study based on the density functional theory calculations to understand the mechanism and ligand effect of the base-stabilized dialumenes toward dihydrogen activation. Among all of the examined modes of dihydrogen activation using the base-stabilized dialumene, we found that the concerted 1,2-hydrogenation of the Al═Al double bond is kinetically more preferable. The concerted 1,2-hydrogenation of the Al═Al double bond adopts an electron-transfer model with certain asynchrony.

View Article and Find Full Text PDF

Soil texture is one of the most important indicators of soil physical properties, which has traditionally been measured through laborious procedures. Approaches utilizing visible near-infrared spectroscopy, with their advantages in efficiency, eco-friendliness and non-destruction, are emerging as potent alternatives. Nevertheless, these approaches often suffer from limitations in classification accuracy, and the substantial impact of spectral preprocessing, model integration, and sample matrix effect is commonly disregarded.

View Article and Find Full Text PDF

Dimethyl sulfide (DMS) is the major biogenic volatile sulfur compound in surface seawater. Good quality DMS data with high temporal and spatial resolution are desirable for understanding reduced sulfur biogeochemistry. Here we present a fully automated and novel "microslug" gas-liquid segmented flow-chemiluminescence (MSSF-CL) based method for the continuous in-situ measurement of DMS in natural waters.

View Article and Find Full Text PDF

In this work, a density functional theory (DFT) study was performed to identify the catalytically active species in the copper-catalyzed three-component reductive hydroxymethylation of styrene with CO and hydrosilane. The calculations reveal that the dimeric copper(I) hydride species, formed in a mixture of the bisphosphine ligand, Cu(OAc), and hydrosilane, probably acts as the catalyst precursor. In the beginning, this species is catalytically competent to trigger the hydrocupration of styrene, along with the formation of the dimeric copper(I) alkyl intermediate.

View Article and Find Full Text PDF

Rational design of highly active and selective photocatalyst for NO removal is significant for the commercial application of photocatalytic technology because the secondary byproduct caused by insufficient and non-selective pollutant oxidation process is a major challenge. In this work, Pd nanoparticles decorated CN (PdCN) is designed by density functional theory (DFT) at first. The PdCN exhibits superiority to CN in terms of both kinetics and thermodynamics performances, as reflected in the lower activation barrier of rate-determining step and higher selectivity for the final product (nitrate) instead of toxic intermediate (NO).

View Article and Find Full Text PDF

Sulfite is known to be harmful to human health and associated to sulfur related environmental effects and ideally should be analyzed onsite owing to its instability. Here we describe an automated, miniaturized, and highly efficient dispersive liquid-liquid microextraction (DLLME) system that seamlessly coupled to a UV-vis spectrophotometer for the trace analysis of sulfite in natural waters. The automated DLLME system was constructed by a single syringe pump that is coupled with a multiposition valve.

View Article and Find Full Text PDF

An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg), ethylmercury (EtHg) and inorganic mercury (Hg) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated.

View Article and Find Full Text PDF

A small, simple, and field-based automated dispersive liquid-liquid microextraction method followed by gas chromatography mass spectrometric analysis was developed for trace level phthalate esters analysis in natural waters. With a single syringe pump that is coupled with a multiposition valve, the whole extraction procedure including cleaning, sampling, mixing of extractant and disperser solvents, extraction, phase separation, and analytes collection was carried out in a totally automated way with a sample throughput of 21 h(-1) . Key factors, such as type and ratio of the extractant and disperser solvent, aspiration flow rate, extraction time, and matrix effect, were thoroughly investigated.

View Article and Find Full Text PDF

An improved novel method based on ionic liquid vortex-assisted liquid-liquid microextraction has been developed for the extraction of methylmercury, ethylmercury and inorganic mercury in sediment samples prior to analysis by high-performance liquid chromatography with cold vapor atomic fluorescence spectrometry. In this work, mercury species were firstly complexed with dithizone, and the complexes were extracted into 1-hexyl-3-methylimidazolium hexafluorophosphate. Key factors that affect the extraction efficiency of mercury species, such as type and amount of ionic liquid and chelatants, extraction time, sample pH, salt effect and matrix effect were investigated.

View Article and Find Full Text PDF

A novel method using vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction has been developed for the extraction of phthalate esters (PAEs) in Chinese liquor samples prior to analysis by GC-MS. In the proposed method, a high-density extraction solvent (carbon tetrachloride) was dispersed into samples with the aid of a surfactant (Triton X-100) and vortex agitation, resulting in a short extraction equilibrium (30 s). After centrifugation, a single microdrop of solvent was easily collected for GC-MS analysis.

View Article and Find Full Text PDF

A simple and fast solvent microextraction method termed vortex-assisted liquid-liquid microextraction (VALLME) coupled with high-performance liquid chromatography-vapor generation atomic fluorescence spectrometry (HPLC-CVAFS) has been developed for the trace analysis of methylmercury (MeHg(+)), ethylmercury (EtHg(+)) and inorganic mercury (Hg(2+)) in sediment samples. Carbon tetrachloride was used as collecting solvent for the extraction of mercury species from sediment by a vortex-assisted extraction. In VALLME, 100 μL 1% (m/v) l-Cysteine were used as extraction solvent and were injected into 4 mL carbon tetrachloride.

View Article and Find Full Text PDF

A simple, rapid, and efficient method, vortex-assisted extraction followed by dispersive liquid-liquid microextraction (DLLME) has been developed for the extraction of polycyclic aromatic hydrocarbons (PAHs) in sediment samples prior to analysis by high performance liquid chromatography fluorescence detection. Acetonitrile was used as collecting solvent for the extraction of PAHs from sediment by vortex-assisted extraction. In DLLME, PAHs were rapidly transferred from acetonitrile to dichloromethane.

View Article and Find Full Text PDF

A novel method for the determination of trace amounts of mercury in sediments by sequential injection cold vapor atomic fluorescence spectrometry coupled with microwave assisted digestion was developed in this paper. Satisfactory results were found when the digestion was carried out at 140 degrees C for 5 min by using 10% HCl-50% HNO3- 40% H2O or 30% HCl-20% HNO3- 50% H2O media. The linear range was 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session68kk8044sg6c948pu9o11gsgttc8gpna): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once