Publications by authors named "Geng Hua"

Article Synopsis
  • Sepsis, a severe condition causing many deaths worldwide, requires effective biomarkers for predicting its progression to septic shock, which current methods have struggled to provide.
  • Researchers developed a machine learning model named SepxFindeR using data from several transcriptomics datasets to better distinguish between sepsis and septic shock.
  • The model identified six key genes related to immune response, demonstrating high accuracy in predicting disease stages, and allows for effective patient identification using blood samples.
View Article and Find Full Text PDF

Thermally activated delayed fluorescence (TADF) molecules have been widely investigated in organic light emitting diodes (OLED), organic lasing, etc. Small singlet-triplet energy gap (ΔE) and high radiative rate constants (k) are highly desired to utilize triplet excitons efficiently and are beneficial to reduce efficiency roll-off of devices of OLED devices. The prevalent TADF molecules are via donor-acceptor molecular design, for which the decreasing of the ΔE is often at the expense of reducing the k.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a new ladder-type conjugated molecule, FCDTDPP, with potential applications in supramolecular chemistry and cancer therapy.
  • It is synthesized using a simple method that connects donor and acceptor components through a vinylene bridge, which enhances its optical properties for effective photothermal conversion.
  • FCDTDPP exhibits excellent biocompatibility and low toxicity, making it a promising candidate for therapeutic use, as indicated by both in vitro and preliminary in vivo experiments on tumors.
View Article and Find Full Text PDF

Microbiota and feeding modes influence the susceptibility of premature newborns to necrotizing enterocolitis (NEC) through mechanisms that remain unknown. Here, we show that microbiota colonization facilitated by breastmilk feeding promotes NOD-like receptor family CARD domain containing 5 (Nlrc5) gene expression in mouse intestinal epithelial cells (IECs). Notably, inducible knockout of the Nlrc5 gene in IECs predisposes neonatal mice to NEC-like injury in the small intestine upon viral inflammation in an NK1.

View Article and Find Full Text PDF

Apoptosis, inflammation, and wound healing are critical pathophysiological events associated with various liver diseases. Currently, there is a lack of in vivo approaches to study hepatocyte apoptosis-induced liver injury and repair. To address this critical knowledge gap, we developed a unique genetically modified mouse model, namely, 3-Transgene (Tg) with inducible Hepatocyte-Specific Apoptosis Phenotype (3xTg-iHAP) in this study.

View Article and Find Full Text PDF

Background & Aims: Necrotizing enterocolitis (NEC) is a life-threatening disease affecting mostly the ileum of preemies. Intestinal epithelial cell (IEC) apoptosis contributes to NEC pathogenesis. However, how scattered crypt IEC apoptosis leads to NEC with excessive villus epithelial necrosis remains unclear.

View Article and Find Full Text PDF

Controlling triplet states is crucial to improve the efficiency and lifetime of organic room temperature phosphorescence (ORTP). Although the intrinsic factors from intramolecular radiative and non-radiative decay have been intensively investigated, the extrinsic factors that affect triplet exciton quenching are rarely reported. Diffusion to the defect sites inside the crystal or at the crystal surface may bring about quenching of triplet exciton.

View Article and Find Full Text PDF

Clinical evidence indicates a connection between gut injuries, infections, inflammation, and an increased susceptibility to systemic inflammation. Nevertheless, the animal models designed to replicate this progression are inadequate, and the fundamental mechanisms are still largely unknown. This research explores the relationship between gut injuries and systemic inflammation using a Dextran Sulfate Sodium (DSS)-induced colonic mucosal injury mouse model.

View Article and Find Full Text PDF

A key player in mitochondrial respiration, p32, often referred to as C1QBP, is mostly found in the mitochondrial matrix. Previously, we showed that p32 interacts with DLAT in the mitochondria. Here, we found that p32 expression was reduced in ccRCC and suppressed progression and metastasis in ccRCC animal models.

View Article and Find Full Text PDF

Purpose: The new grading system for invasive nonmucinous lung adenocarcinoma (LUAD) in the 2021 World Health Organization Classification of Thoracic Tumors was based on a combination of histologically predominant subtypes and high-grade components. In this study, a model for the pretreatment prediction of grade 3 tumors was established according to new grading standards.

Methods: We retrospectively collected 399 cases of clinical stage I (cStage-I) LUAD surgically treated in Tianjin Chest Hospital from 2015 to 2018 as the training cohort.

View Article and Find Full Text PDF

Zirconium (Zr) is an important industrial metal that is widely used in nuclear engineering, chemical engineering, and space and aeronautic engineering because of its unique properties. The high-pressure behaviors of Zr have been widely investigated in the past several decades. However, the controversies still remain in terms of the phase transition (PT) pressures and the isostructural PT in β-Zr: why the PT pressure in Zr is so scattered, and whether the β to β' PT exists.

View Article and Find Full Text PDF

With the power conversion efficiency of binary polymer solar cells dramatically improved, the thermal stability of the small-molecule acceptors raised the main concerns on the device operating stability. Here, to address this issue, thiophene-dicarboxylate spacer tethered small-molecule acceptors are designed, and their molecular geometries are further regulated via the thiophene-core isomerism engineering, affording dimeric TDY-α with a 2, 5-substitution and TDY-β with 3, 4-substitution on the core. It shows that TDY-α processes a higher glass transition temperature, better crystallinity relative to its individual small-molecule acceptor segment and isomeric counterpart of TDY-β, and a more stable morphology with the polymer donor.

View Article and Find Full Text PDF

The development of conjugated polymers with high semiconducting performance and high reliability is of great significance for flexible electronics. Herein, we developed a new type of electron-accepting building block; i.e.

View Article and Find Full Text PDF

Peptides/small proteins, encoded by noncanonical open reading frames (ORF) of previously claimed non-coding RNAs, have recently been recognized possessing important biological functions, but largely uncharacterized. 1p36 is an important tumor suppressor gene (TSG) locus frequently deleted in multiple cancers, with critical TSGs like TP73, PRDM16, and CHD5 already validated. Our CpG methylome analysis identified a silenced 1p36.

View Article and Find Full Text PDF

The convolutional neural networks (CNNs) have been widely proposed in the medical image analysis tasks, especially in the image segmentations. In recent years, the encoder-decoder structures, such as the U-Net, were rendered. However, the multi-scale information transmission and effective modeling for long-range feature dependencies in these structures were not sufficiently considered.

View Article and Find Full Text PDF

Breast cancer is a leading cause of death and morbidity among female cancers. Several factors, including hormone levels, lifestyle, and dysregulated RNA-binding proteins, have been associated with the development of breast cancer. Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and protein kinase C, Zeta isoform (PKCζ) are oncogenes implicated in numerous cancers, including breast cancer.

View Article and Find Full Text PDF

Vascular calcification (VC) has been associated with a risk of cardiovascular diseases. Iron may play a critical role in progressive VC. Therefore, we investigated the effects of iron overload on the aorta of rats.

View Article and Find Full Text PDF

Background And Purpose: This study aimed to effectively identify children with drug-resistant epilepsy (DRE) in the early stage of epilepsy, and take personalized interventions, to improve patients' prognosis, reduce serious comorbidity, and save social resources. Herein, we developed and validated a nomogram prediction model for children with DRE.

Methods: The training set was patients with epilepsy who visited the Children's Hospital of Soochow University (Suzhou Industrial Park, Jiangsu Province, China) between January 2015 and December 2017.

View Article and Find Full Text PDF

The spatial separation between the highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) in thermally activated delayed fluorescent (TADF) molecules leads to charge transfer (CT) states, which degrade the oscillator strength of emission transition and sacrifices high solid-state photoluminescence quantum yield (PLQY), together limiting its application in organic solid-state lasers (OSSLs). Here, we demonstrated organic microwire lasers from TADF emitters that combine aggregation induced emission (AIE) and local excited (LE) state characteristics. The unique AIE and LE feature lead to a PLQY approaching 50 % and a high optical gain of 870 cm for TADF microwires.

View Article and Find Full Text PDF

Background: Percutaneous needle biopsy (PNB) and bronchoscopic biopsy (BB) are widely used in the preoperative diagnosis of pulmonary nodules, but whether PNB or BB may cause tumor spread through air spaces (STAS) has not been reported.

Methods: 433 postoperative patients with pathological stage I non-small cell lung cancer (NSCLC) from January 2015 to December 2018 at our hospital were enrolled and divided into PNB group (n = 40), BB group (n = 48) and non-biopsy group (n = 345). The PNB and BB groups were matched using propensity score matched (PSM) separately from the non-biopsy group, after which the effects of PNB and BB on STAS, recurrence-free survival (RFS) and overall survival (OS) were assessed.

View Article and Find Full Text PDF

An organic light-emitting transistor (OLET) is a candidate device architecture for developing electrically pumped organic solid-state lasers, but it remains a critical challenge because of the lack of organic semiconductors that simultaneously possess a high solid-state emission efficiency (Φ), a high and balanced ambipolar mobility (μ), and a large stimulated emission cross-section. Here, we designed a molecule of 4,4'-bis(2-dibenzothiophenyl-vinyl)-biphenyl (DBTVB) and prepared its ultrathin single-crystal microplates with herringbone packing arrangements, which achieve balanced mobilities of μ = 3.55 ± 0.

View Article and Find Full Text PDF

Feeding modes influence the gut microbiome, immune system, and intestinal barrier homeostasis in neonates; how feeding modes impact susceptibility to neonatal gastrointestinal (GI) diseases is still uncertain. Here, we investigated the impact of dam feeding (DF) and formula feeding (FF) on features of the gut microbiome and physiological inflammation during the first 2 days of postnatal development and on the susceptibility to intestinal injury related to the inflammatory state in neonatal mouse pups. 16S rRNA sequencing data revealed microbiome changes, lower α-diversity, and a distinct pattern of β-diversity including expansion of and in the ileum of FF pups compared with DF pups by postnatal day (P)2.

View Article and Find Full Text PDF

Complement component 1 Q subcomponent binding protein (C1QBP) plays a vital role in the progression and metabolism of cancer. Studies have shown that xanthine dehydrogenase (XDH)-derived reactive oxygen species (ROS) accelerates tumor growth, and also induces mutations or produces cytotoxic effects concurrently. However, the role of C1QBP in metabolism, oxidative stress, and apoptosis of renal cell carcinoma (RCC) cells have not yet been explored.

View Article and Find Full Text PDF