Automatic segmentation of Parkinson's disease (PD) related deep gray matter (DGM) nuclei based on brain magnetic resonance imaging (MRI) is significant in assisting the diagnosis of PD. However, due to the degenerative-induced changes in appearance, low tissue contrast, and tiny DGM nuclei size in elders' brain MRI images, many existing segmentation models are limited in the application. To address these challenges, this paper proposes a PD-related DGM nuclei segmentation network to provide precise prior knowledge for aiding diagnosis PD.
View Article and Find Full Text PDFObjectives: The altered neuromelanin in substantia nigra pars compacta (SNpc) is a valuable biomarker in the detection of early-stage Parkinson's disease (EPD). Diagnosis via visual inspection or single radiomics based method is challenging. Thus, we proposed a novel hybrid model that integrates radiomics and deep learning methodologies to automatically detect EPD based on neuromelanin-sensitive MRI, namely short-echo-time Magnitude (setMag) reconstructed from quantitative susceptibility mapping (QSM).
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a degenerative illness of the central nervous system that is irreversible and is characterized by gradual behavioral impairment and cognitive dysfunction. Researches on exosomes in AD have gradually gained the attention of scholars in recent years. However, the literatures in this research area do not yet have a comprehensive visualization analysis.
View Article and Find Full Text PDFBefore the Stereotactic Radiosurgery (SRS) treatment, it is of great clinical significance to avoid secondary genetic damage and guide the personalized treatment plans for patients with brain metastases (BM) by predicting the response to SRS treatment of brain metastatic lesions. Thus, we developed a multi-task learning model termed SRTRP-Net to provide prior knowledge of BM ROI and predict the SRS treatment response of the lesion. In dual-encoder tumor segmentation Network (DTS-Net), two parallel encoders encode the original and mirrored multi-modal MRI images.
View Article and Find Full Text PDFTertiary lymphoid structure (TLS) can predict the prognosis and sensitivity of tumors to immune checkpoint inhibitors (ICIs) therapy, whether it can be noninvasively predicted by radiomics in hepatocellular carcinoma with liver transplantation (HCC-LT) has not been explored. In this study, it is found that intra-tumoral TLS abundance is significantly correlated with recurrence-free survival (RFS) and overall survival (OS). Tumor tissues with TLS are characterized by inflammatory signatures and high infiltration of antitumor immune cells, while those without TLS exhibit uncontrolled cell cycle progression and activated mTOR signaling by bulk and single-cell RNA-seq analyses.
View Article and Find Full Text PDF. Precise hepatocellular carcinoma (HCC) detection is crucial for clinical management. While studies focus on computed tomography-based automatic algorithms, there is a rareness of research on automatic detection based on dynamic contrast enhanced (DCE) magnetic resonance imaging.
View Article and Find Full Text PDFBrain tumors are among the most prevalent neoplasms in current medical studies. Accurately distinguishing and classifying brain tumor types accurately is crucial for patient treatment and survival in clinical practice. However, existing computer-aided diagnostic pipelines are inadequate for practical medical use due to tumor complexity.
View Article and Find Full Text PDFPurpose: Gliomas are the most common primary brain tumor. Currently, topological alterations of whole-brain functional network caused by gliomas are not fully understood. The work here clarified the topological reorganization of the functional network in patients with unilateral frontal low-grade gliomas (LGGs).
View Article and Find Full Text PDFBioengineering (Basel)
November 2023
We aimed to compare the performance and interobserver agreement of radiologists manually segmenting images or those assisted by automatic segmentation. We further aimed to reduce interobserver variability and improve the consistency of radiomics features. This retrospective study included 327 patients diagnosed with prostate cancer from September 2016 to June 2018; images from 228 patients were used for automatic segmentation construction, and images from the remaining 99 were used for testing.
View Article and Find Full Text PDFObjective: To develop a discrimination pipeline concerning both radiomics and spatial distribution features of brain lesions for discrimination of multiple sclerosis (MS), aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorder (NMOSD), and myelin-oligodendrocyte-glycoprotein-IgG-associated disorder (MOGAD).
Methods: Hyperintensity T2 lesions were delineated in 212 brain MRI scans of MS (n = 63), NMOSD (n = 87), and MOGAD (n = 45) patients. To avoid the effect of fixed training/test dataset sampling when developing machine learning models, patients were allocated into 4 sub-groups for cross-validation.
Epilepsy refers to a disabling neurological disorder featured by the long-term and unpredictable occurrence of seizures owing to abnormal excessive neuronal electrical activity and is closely linked to unresolved inflammation, oxidative stress, and hypoxia. The difficulty of accurate localization and targeted drug delivery to the lesion hinders the effective treatment of this disease. The locally activated inflammatory cells in the epileptogenic region offer a new opportunity for drug delivery to the lesion.
View Article and Find Full Text PDFMild cognitive impairment (MCI) is a critical prodromal stage of Alzheimer's disease (AD), and the mechanism underlying the conversion is not fully explored. Construction and inter-cohort validation of imaging biomarkers for predicting MCI conversion is of great challenge at present, due to lack of longitudinal cohorts and poor reproducibility of various study-specific imaging indices. We proposed a novel framework for inter-cohort MCI conversion prediction, involving comparison of structural, static, and dynamic functional brain features from structural magnetic resonance imaging (sMRI) and resting-state functional MRI (fMRI) between MCI converters (MCI_C) and non-converters (MCI_NC), and support vector machine for construction of prediction models.
View Article and Find Full Text PDFComput Med Imaging Graph
December 2023
Glioblastoma (GBM), isolated brain metastasis (SBM), and primary central nervous system lymphoma (PCNSL) possess a high level of similarity in histomorphology and clinical manifestations on multimodal MRI. Such similarities have led to challenges in the clinical diagnosis of these three malignant tumors. However, many existing models solely focus on either the task of segmentation or classification, which limits the application of computer-aided diagnosis in clinical diagnosis and treatment.
View Article and Find Full Text PDFPurpose: In 2021, the WHO central nervous system (CNS) tumor classification criteria added the diagnosis of diffuse astrocytic glioma, IDH wild-type, with molecular features of glioblastoma, WHO grade 4 (DAG-G). DAG-G may exhibit the aggressiveness and malignancy of glioblastoma (GBM) despite the lower histological grade, and thus a precise preoperative diagnosis can help neurosurgeons develop more refined individualized treatment plans. This study aimed to establish a predictive model for the non-invasive identification of DAG-G based on preoperative MRI radiomics.
View Article and Find Full Text PDFFront Med (Lausanne)
September 2023
Objectives: Gliomas and brain metastases (Mets) are the most common brain malignancies. The treatment strategy and clinical prognosis of patients are different, requiring accurate diagnosis of tumor types. However, the traditional radiomics diagnostic pipeline requires manual annotation and lacks integrated methods for segmentation and classification.
View Article and Find Full Text PDFBackground: Coupling between neuronal activity and blood perfusion is termed neurovascular coupling (NVC), and it provides a potentially new mechanistic perspective into understanding numerous brain diseases. Although abnormal brain activity and blood supply have been separately reported in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), whether anomalous NVC would be present is unclear.
Purpose: To investigate NVC changes and potential neural basis in MELAS by combining resting-state functional MRI (rs-fMRI) and arterial spin labeling (ASL).
To develop a decision tree model based on clinical information, molecular genetics information and pre-operative magnetic resonance imaging (MRI) radiomics-score (Rad-score) to investigate its predictive value for the risk of recurrence of glioblastoma (GBM) within one year after total resection. Patients with pathologically confirmed GBM at Huashan Hospital, Fudan University between November 2017 and June 2020 were retrospectively analyzed, and the enrolled patients were randomly divided into training and test sets according to the ratio of 3:1. The relevant clinical and MRI data of patients before, after surgery and follow-up were collected, and after feature extraction on preoperative MRI, the LASSO filter was used to filter the features and establish the Rad-score.
View Article and Find Full Text PDFObjectives: The first treatment strategy for brain metastases (BM) plays a pivotal role in the prognosis of patients. Among all strategies, stereotactic radiosurgery (SRS) is considered a promising therapy method. Therefore, we developed and validated a radiomics-based prediction pipeline to prospectively identify BM patients who are insensitive to SRS therapy, especially those who are at potential risk of progressive disease.
View Article and Find Full Text PDFObjectives: Edema is a complication of gamma knife radiosurgery (GKS) in meningioma patients that leads to a variety of consequences. The aim of this study is to construct radiomics-based machine learning models to predict post-GKS edema development.
Methods: In total, 445 meningioma patients who underwent GKS in our institution were enrolled and partitioned into training and internal validation datasets (8:2).
Objectives: Glioblastoma (GB) without peritumoral fluid-attenuated inversion recovery (FLAIR) hyperintensity is atypical and its characteristics are barely known. The aim of this study was to explore the differences in pathological and MRI-based intrinsic features (including morphologic and first-order features) between GBs with peritumoral FLAIR hyperintensity (PFH-bearing GBs) and GBs without peritumoral FLAIR hyperintensity (PFH-free GBs).
Methods: In total, 155 patients with pathologically diagnosed GBs were retrospectively collected, which included 110 PFH-bearing GBs and 45 PFH-free GBs.