Publications by authors named "Genevieve Vincent"

Postfracture survival rates provide prognostic information but are rarely reported along with other mortality outcomes in adults aged ≥50 yr. The timing of survival change following a fracture also needs to be further elucidated. This population-based, matched-cohort, retrospective database study examined 98 474 patients (73% women) aged ≥66 yr with an index fracture occurring at an osteoporotic site (hip, clinical vertebral, proximal non-hip non-vertebral [pNHNV], and distal non-hip non-vertebral [dNHNV]) from 2011 to 2015, who were matched (1:1) to nonfracture individuals based on sex, age, and comorbidities.

View Article and Find Full Text PDF

The potential impact of tesamorelin on CYP3A activity was investigated by examining its effect on the pharmacokinetics of simvastatin and ritonavir. In two randomized, two-way crossover studies, subjects were administered 2 mg tesamorelin on Days 1-7 with 80 mg simvastatin or 100 mg ritonavir co-administered on Day 6 (Treatment A), and a single dose of simvastatin or ritonavir alone on Day 6 (Treatment B). Pharmacokinetic samples were collected on Day 6 to measure simvastatin, ritonavir and tesamorelin plasma concentrations.

View Article and Find Full Text PDF

The objective of this study was to test the effect of increasing fatty acid concentrations on substrate fluxes through pathways leading to citrate synthesis and release in the heart. This was accomplished using semirecirculating work-performing rat hearts perfused with substrate mixtures mimicking the in situ milieu (5.5 mM glucose, 8 nM insulin, 1 mM lactate, 0.

View Article and Find Full Text PDF

The objective of the present study was to compare energy substrate fluxes through metabolic pathways leading to mitochondrial citrate synthesis and release in normal and diseased rat hearts using 13C-substrates and mass isotopomer analysis by gas chromatography-mass spectrometry (GCMS). This study was prompted by our previous finding of a modulated citrate release by perfused rat hearts and by the possibility that a dysregulated myocardial citrate release represents a specific chronic alteration of energy metabolism in cardiac patients. The 15-week-old spontaneously hypertensive rat (SHR) was chosen as our animal model of disease and the Wistar-Kyoto (WKY) rat as its matched control.

View Article and Find Full Text PDF

Little is known about the role of mitochondrial NADP(+)-isocitrate dehydrogenase (NADP(+)-ICDH) in the heart, where this enzyme shows its highest expression and activity. We tested the hypothesis that in the heart, NADP(+)-ICDH operates in the reverse direction of the citric acid cycle (CAC) and thereby may contribute to the fine regulation of CAC activity (Sazanov and Jackson, FEBS Lett 344: 109-116, 1994). We documented a reverse flux through this enzyme in rat hearts perfused with the medium-chain fatty acid octanoate using [U-(13)C(5)]glutamate and mass isotopomer analysis of tissue citrate (Comte et al.

View Article and Find Full Text PDF

Little is known about the sources of cytosolic acetyl-CoA used for the synthesis of malonyl-CoA, a key regulator of fatty acid oxidation in the heart. We tested the hypothesis that citrate provides acetyl-CoA for malonyl-CoA synthesis after its mitochondrial efflux and cleavage by cytosolic ATP-citrate lyase. We expanded on a previous study where we characterized citrate release from perfused rat hearts (Vincent G, Comte B, Poirier M, and Des Rosiers C.

View Article and Find Full Text PDF