Tissue-engineered skeletal muscle is a promising novel therapy for the treatment of volumetric muscle loss (VML). Our laboratory has developed tissue-engineered skeletal muscle units (SMUs) and engineered neural conduits (ENCs), and modularly scaled them to clinically relevant sizes for the treatment of VML in a large animal (sheep) model. In a previous study, we evaluated the effects of the SMUs and ENCs in treating a 30% VML injury in the ovine peroneus tertius muscle after a 3-month recovery period.
View Article and Find Full Text PDFVolumetric muscle loss (VML) is traumatic, degenerative, or surgical loss of skeletal muscle that exceeds the regenerative capacity of the remaining muscle, thus resulting in impaired muscle function. In humans, the loss of 30% or more mass of any one muscle will result in permanent structural and functional loss. Current VML repair treatments are limited by donor site morbidity and graft tissue availability, necessitating alternative muscle graft sources.
View Article and Find Full Text PDFMuch effort has been made to fabricate engineered tissues on a scale that is clinically relevant to humans; however, scale-up remains one of the most significant technological challenges of tissue engineering to date. To address this limitation, our laboratory has developed tissue-engineered skeletal muscle units (SMUs) and engineered neural conduits (ENCs), and modularly scaled them to clinically relevant sizes for the treatment of volumetric muscle loss (VML). The goal of this study was to evaluate the SMUs and ENCs , and to test the efficacy of our SMUs and ENCs in restoring muscle function in a clinically relevant large animal (sheep) model.
View Article and Find Full Text PDF