Microcell-mediated transfer of normal chromosome 11 (chr 11) to a clonal derivative of the ovarian cancer cell line, OVCAR3, was performed and generated independent hybrids with a common set of phenotypes: inhibition of cell growth and of cellular migration in vitro; and inhibition of tumor growth in vivo. Differential display reverse transcriptase-PCR (RT-PCR), cDNA-representational difference analysis, and hybridization of cDNA high-density filter arrays identified altered mRNAs associated with these phenotypic alterations. Quantitative RT-PCR-based validation of each altered mRNA eliminated false positives to identify a reduced set of expression differences.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC), the leading cause of death from gynecological malignancy, is a poorly understood disease. The typically advanced presentation of EOC with loco-regional dissemination in the peritoneal cavity and the rare incidence of visceral metastases are hallmarks of the disease. These features relate to the biology of the disease, which is a principal determinant of outcome.
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is the most common cause of death from gynaecological malignancy. Resistance to platinum chemotherapy is a major reason for treatment failure and poor prognosis. The human homeobox gene BARX2 is located within a minimal region at 11q25 that is associated with frequent loss of heterozygosity (LOH) and adverse survival in EOC.
View Article and Find Full Text PDF