Publications by authors named "Genevieve Degols"

The interferon (IFN) system is a major effector of the innate immunity that allows time for the subsequent establishment of an adaptive immune response against wide-range pathogens. The effectiveness of IFN to control initial infection requires the cooperation between several pathways induced in the target cells. Recent studies that highlight the implication of the 3'-5' exonuclease ISG20 (IFN Stimulated Gene product of 20 kDa) in the host's defenses against pathogens are summarised in this review.

View Article and Find Full Text PDF

We have previously shown that ISG20, an interferon (IFN)-induced gene, encodes a 3' to 5' exoribonuclease member of the DEDD superfamily of exonucleases. ISG20 specifically degrades single-stranded RNA. In this report, using immunofluorescence analysis, we demonstrate that in addition to a diffuse cytoplasmic and nucleoplasmic localization, the endogenous ISG20 protein was present in the nucleus both in the nucleolus and in the Cajal bodies (CBs).

View Article and Find Full Text PDF

In Ciona intestinalis, the elimination of extra-embryonic test cells during early stage of development is delayed by a fertilization signal. Test cells undergo a caspase-dependent apoptosis event repressed by thyroxine (T4)-activated NF-kappaB. When apoptosis was experimentally blocked, the hatching stage was delayed.

View Article and Find Full Text PDF

Interferons (IFNs) encode a family of secreted proteins that provide the front-line defence against viral infections. It was recently shown that ISG20, a new 3'-->5' exoribonuclease member of the DEDD superfamily of exonucleases, represents a novel antiviral pathway in the mechanism of IFN action. In this report, it was shown that ISG20 expression is rapidly and strongly induced during human immunodeficiency virus type 1 (HIV-1) infection.

View Article and Find Full Text PDF

Many interferon (IFN)-stimulated genes are also induced by double-stranded RNA (dsRNA), a component closely associated with the IFN system in the context of virus-host interactions. Recently, we demonstrated that the IFN-induced 3' --> 5' exonuclease ISG20 possesses antiviral activities against RNA viruses. Here we show that ISG20 induction by synthetic dsRNA (pIpC) is stronger and faster than its induction by IFN.

View Article and Find Full Text PDF

Interferons (IFNs) encode a family of secreted proteins that provide the front-line defense against viral infections. Their diverse biological actions are thought to be mediated by the products of specific but usually overlapping sets of cellular genes induced in the target cells. We have recently isolated a new human IFN-induced gene that we have termed ISG20, which codes for a 3' to 5' exonuclease with specificity for single-stranded RNA and, to a lesser extent, for DNA.

View Article and Find Full Text PDF