Publications by authors named "Genevieve Corraze"

Article Synopsis
  • * 4000 female rainbow trout were fed diets with different AA levels (0.6%, 1.1%, or 2.5%) over eight weeks, revealing that while lower AA levels enabled some fatty acid production, they led to higher mortality rates compared to those with increased AA levels.
  • * The 1.1% AA diet provided the best balance, enhancing stress resilience and neurotransmitter turnover after stress tests, while the 2.5% diet indicated potential risks of oxidative damage due to increased
View Article and Find Full Text PDF

This study aimed to determine the effects of dietary inclusion of larvae (yellow worms) meal (TM) on meagre fish () whole-body fatty acids (FA) profile and hepatic and intestine oxidative status. For that purpose, fish were fed for 9 weeks a fishmeal-based diet (control) or diets including 10%, 20%, or 30% TM. With the increase in dietary TM level, whole-body oleic acid, linoleic acid, monounsaturated FA, and n-6 polyunsaturated FA (PUFA) increased while saturated FA (SFA), n-3 PUFA, n-3 long chain-PUFA, SFA:PUFA ratio, n3:n6 ratio, and FA retention decreased.

View Article and Find Full Text PDF

It is now recognised that parental diets could alter their offspring metabolism, concept known as nutritional programming. For agronomic purposes, it has been previously proposed that programming could be employed as a strategy to prepare individual for future nutritional challenges. Concerning cultured fish that belong to high trophic level, plant-derived carbohydrates are a possible substitute for the traditional protein-rich fishmeal in broodstock diet, lowering thus the dietary protein-to-carbohydrate ratio (HC/LP nutrition).

View Article and Find Full Text PDF

Reproductive performances, and the factors affecting them, are of major importance especially for farmed fish in the context of the development of a sustainable aquaculture. Dietary maternal lipids have been identified as a major factor affecting reproductive performances. Nevertheless, the consequences of carbohydrates have been little studied while plant-derived carbohydrates could be increasingly used in broodstock diets.

View Article and Find Full Text PDF

Background: The broodstock diet, and in particular the lipid and fatty acid composition of the diet, is known to play a key role in reproductive efficiency and survival of the progeny in fish. A major problem when replacing both fish meal and fish oil by plant sources is the lack of n-3 long chain polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). To address this problem, we studied the effect of the plant-based diet supplemented with Schizochytrium sp.

View Article and Find Full Text PDF

Background: In response to major challenges regarding the supply and sustainability of marine ingredients in aquafeeds, the aquaculture industry has made a large-scale shift toward plant-based substitutions for fish oil and fish meal. But, this also led to lower levels of healthful n-3 long-chain polyunsaturated fatty acids (PUFAs)-especially eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids-in flesh. One potential solution is to select fish with better abilities to retain or synthesise PUFAs, to increase the efficiency of aquaculture and promote the production of healthier fish products.

View Article and Find Full Text PDF

The long-term effect of a plant (P)-based diet was assessed by proton nuclear magnetic resonance (H-NMR) metabolomics in rainbow trout fed a marine fish meal (FM)-fish oil (FO) diet (M), a P-based diet and a control commercial-like diet (C) starting with the first feeding. Growth performances were not heavily altered by long-term feeding on the P-based diet. An H-NMR metabolomic analysis of the feed revealed significantly different soluble chemical compound profiles between the diets.

View Article and Find Full Text PDF

One of the top priorities of the aquaculture industry is the genetic improvement of economically important traits in fish, such as those related to processing and quality. However, the accuracy of genetic evaluations has been hindered by a lack of data on such traits from a sufficiently large population of animals. The objectives of this study were thus threefold: (i) to estimate genetic parameters of growth-, yield-, and quality-related traits in rainbow trout () using three different phenotyping technologies [invasive and non-invasive: microwave-based, digital image analysis, and magnetic resonance imaging (MRI)], (ii) to detect quantitative trait loci (QTLs) associated with these traits, and (iii) to identify candidate genes present within these QTL regions.

View Article and Find Full Text PDF

Brain functions are known to be mainly modulated by adequate dietary intake. Inadequate intake as can be an excess or significant deficiency affect cognitive processes, behavior, neuroendocrine functions and synaptic plasticity with protective or harmful effects on neuronal physiology. Lipids, in particular, ω-6 and ω-3 long chain polyunsaturated fatty acids (LC-PUFAs) play structural roles and govern the different functions of the brain.

View Article and Find Full Text PDF

Sustainable aquaculture production requires a greater reduction in the use of marine-derived ingredients, and one of the most promising solutions today is the augmentation in the proportion of digestible carbohydrates in aquafeed. This challenge is particularly difficult for high trophic level teleost fish as they are considered to be glucose-intolerant (growth delay and persistent postprandial hyperglycemia observed in juveniles fed a diet containing more than 20% of carbohydrates). It was previously suggested that broodstock could potentially use carbohydrates more efficiently than juveniles, probably due to important metabolic changes that occur during gametogenesis.

View Article and Find Full Text PDF

Characterization and modulation of cerebral function by ω-3 long chain polyunsaturated fatty acids (ω-3 LC-PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) enrichment in plant based-diet were studied in rainbow trout (Oncorhynchus mikyss). We hypothesized that ω-3 LC-PUFAs are involved in the regulation of cerebral function in fish. During nine weeks, we examined the growth performance of rainbow trout for three experimental plant based-diets containing distinct levels of EPA and DHA.

View Article and Find Full Text PDF

Cholesterol metabolism is greatly affected in fish fed plant-based diet. The regulation of cholesterol metabolism is mediated by both transcriptional factors such as sterol regulatory element-binding proteins (SREBPs) and liver X receptors (LXRs), and posttranscriptional factors including miRNAs. In mammals, SREBP-2 and LXRα are involved in the transcriptional regulation of cholesterol synthesis and elimination, respectively.

View Article and Find Full Text PDF

The control of feed intake in fish in aquaculture requires the development of new techniques to improve diet composition, feed conversion efficiency and growth. The aim must be sustainability and an effective use of resources. The effect of replacing traditional aqua-feed ingredients (fishmeal and fish oil) by a 100% plant-based diet is known to drastically decrease fish performance (survival and growth).

View Article and Find Full Text PDF

Rainbow trout () is recognized as a typical "glucose-intolerant" fish, and the limits of dietary carbohydrate utilization have been investigated for many years. In this study, the objective was to test the molecular effects of dietary carbohydrates on intermediary metabolism in two major metabolic tissues, liver and muscle. Another objective was also to study if the response to carbohydrate intake depended on the genetic background.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are a class of small non-coding RNAs which are known to posttranscriptionally regulate the expression of most genes in both animals and plants. Meanwhile, studies have shown that numbers of miRNAs are present in body fluids including the plasma. Despite the mode of action of these circulating miRNAs still remains unknown, they have been found to be promising biomarkers for disease diagnosis, prognosis and response to treatment.

View Article and Find Full Text PDF

For an increased incorporation of plant ingredients in aquafeeds at the expense of fish meal (FM) and fish oil (FO), more knowledge is needed on the effects at the intestine level of dietary vegetable oils (VO) and carbohydrates (CH), and of possible interactions. For that purpose, in this study, the activities of digestive pancreatic enzymes (amylase, lipase, total alkaline proteases), gut microbiota, and histomorphology were assessed in gilthead sea bream (IBW 71.0 ± 1.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how acute handling stress affects the liver's oxidative status in European sea bass juveniles fed different diets.
  • Four diets were tested—two lipid sources (fish oil and vegetable oil) combined with varying levels of carbohydrate (20% and 0% gelatinized starch)—over a 13-week period.
  • Findings showed that while stress lowered blood components and increased liver lipid peroxidation, dietary carbohydrates helped reduce oxidative stress, though handling stress still heightened overall oxidative damage despite varied diet effects on liver enzyme activities.
View Article and Find Full Text PDF

The effects of replacing fishmeal and fish oil with a plant-based diet were studied in juvenile (10g) and ongrowing (250-350g) rainbow trout from first-feeding. Feed-related differences in the intestinal and hepatic transcriptome were examined in juveniles after 7 months of feeding at 7°C. Based on microarray results obtained for juveniles, the expression of selected genes related to lipid, cholesterol and energy metabolisms, was assessed by RT-qPCR in ongrowing trout after 6 additional months of feeding at 17°C.

View Article and Find Full Text PDF

When compared with fish meal and fish oil, plant ingredients differ not only in their protein content and amino acid and fatty acid profiles but are also devoid of cholesterol, the major component of cell membrane and precursor of several bioactive compounds. Based on these nutritional characteristics, plant-based diets can affect fish physiology and cholesterol metabolism. To investigate the mechanisms underlying cholesterol homeostasis, rainbow trout were fed from 1 g body wt for 6 mo with a totally plant-based diet (V), a marine diet (M), and a marine-restricted diet (MR), with feed intake adjusted to that of the V group.

View Article and Find Full Text PDF

In zebrafish brains, populations of continuously proliferating cells are present during an entire life span. Under normal conditions, stem cells give rise to rapidly proliferating progenitors that quickly exit the cell cycle and differentiate. Hence fish are favorable models to study what regulates postembryonic neurogenesis.

View Article and Find Full Text PDF

The long-term effects on growth performance, body composition, plasma metabolites, liver and intestine glucose and lipid metabolism were assessed in gilthead sea bream juveniles fed diets without carbohydrates (CH-) or carbohydrate-enriched (20 % gelatinised starch, CH+) combined with two lipid sources (fish oil; or vegetable oil (VO)). No differences in growth performance among treatments were observed. Carbohydrate intake was associated with increased hepatic transcripts of glucokinase but not of 6-phosphofructokinase.

View Article and Find Full Text PDF

The whole-body transcriptome of trout alevins was characterised to investigate the effects of long-term feeding of rainbow trout broodstock females a diet free of fishmeal and fish oil on the metabolic capacities of progeny. Effects were studied before first feeding and after 3 weeks of feeding diets containing different proportions of marine and plant ingredients. Feeding alevins plant-based diets resulted in lower fish body weight, irrespective of maternal nutritional history.

View Article and Find Full Text PDF

A digestibility trial was performed with gilthead sea bream juveniles (IBW = 72 g) fed four diets differing in lipid source (fish oil, FO; or a blend of vegetable oil, VO) and starch content (0 %, CH-; or 20 %, CH+) to evaluate the potential interactive effects between carbohydrates and VO on the processes involved in digestion, absorption and transport of lipids and glucose. In fish fed VO diets a decrease in lipid digestibility and in cholesterol (C), High Density Lipoprotein(HDL)-C and Low Density Lipoprotein (LDL)-C (only in CH+ group) were recorded. Contrarily, dietary starch induced postprandial hyperglycemia and time related alterations on serum triacylglycerol (TAG), phospholipid (PL) and C concentrations.

View Article and Find Full Text PDF

The impact of increased incorporation of plant ingredients on diets for rainbow trout was evaluated in terms of gene expression of gastric (gastric lipase, pepsinogen) and intestinal (prolidase, maltase, phospholipase A2) digestive enzymes and nutrient transporters (peptide and glucose transporters), as well as of postprandial levels of plasma glucose, triglycerides and total free amino acids. For that purpose, trout alevins were fed from the start of exogenous feeding one of three different experimental diets: a diet rich in fish meal and fish oil (FM-FO), a plant-based diet (noFM-noFO) totally free from fish meal and fish oil, but containing plant ingredients and a Mixed diet (Mixed) intermediate between the FM-FO and noFM-noFO diets. After 16 months of rearing, all fish were left unfed for 72 h and then given a single meal to satiation.

View Article and Find Full Text PDF

This study aimed to evaluate the effects of dietary lipid source and carbohydrate content on the oxidative status of European sea bass (Dicentrarchus labrax) juveniles. For that purpose, four diets were formulated with fish oil (FO) and vegetable oils (VO) as the lipid source and with 20 or 0 % gelatinised starch as the carbohydrate source, in a 2×2 factorial design. Liver and intestine antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD)), hepatic and intestinal lipid peroxidation (LPO), as well as hepatic oxidative stress index (OSI), were measured in fish fed the experimental diets for 73 d (n 9 fish/diet).

View Article and Find Full Text PDF