Male infertility is an important health concern that is expected to have a major genetic etiology. Although high-throughput sequencing has linked gene defects to more than 50% of rare and severe sperm anomalies, less than 20% of common and moderate forms are explained. We hypothesized that this low success rate could at least be partly due to oligogenic defects - the accumulation of several rare heterozygous variants in distinct, but functionally connected, genes.
View Article and Find Full Text PDFYes-associated protein (YAP) signaling has emerged as a crucial pathway in several normal and pathological processes. Although the main upstream effectors that regulate its activity have been extensively studied, the role of the endosomal system has been far less characterized. Here, we identified the late endosomal/lysosomal adaptor MAPK and mTOR activator (LAMTOR) complex as an important regulator of YAP signaling in a preosteoblast cell line.
View Article and Find Full Text PDFOsteoblast differentiation is a highly regulated process that requires coordinated information from both soluble factors and the extracellular matrix. Among these extracellular stimuli, chemical and physical properties of the matrix are sensed through cell surface receptors such as integrins and transmitted into the nucleus to drive specific gene expression. Here, we showed that the conditional deletion of β1 integrins in the osteo-precursor population severely impacts bone formation and homeostasis both in vivo and in vitro.
View Article and Find Full Text PDFCell adhesion to the extracellular matrix or to surrounding cells plays a key role in cell proliferation and differentiation and is critical for proper tissue homeostasis. An important pathway in adhesion-dependent cell proliferation is the Hippo signaling cascade, which is coregulated by the transcription factors Yes-associated protein 1 (YAP1) and transcriptional coactivator with PDZ-binding motif (TAZ). However, how cells integrate extracellular information at the molecular level to regulate YAP1's nuclear localization is still puzzling.
View Article and Find Full Text PDFThe morphogenetic and differentiation events required for bone formation are orchestrated by diffusible and insoluble factors that are localized within the extracellular matrix. In mice, the deletion of ICAP-1, a modulator of β1 integrin activation, leads to severe defects in osteoblast proliferation, differentiation, and mineralization and to a delay in bone formation. Deposition of fibronectin and maturation of fibrillar adhesions, adhesive structures that accompany fibronectin deposition, are impaired upon ICAP-1 loss, as are type I collagen deposition and mineralization.
View Article and Find Full Text PDFOlfactory embryogenesis was studied using an anti-chick keratin antibody on chick embryo sections as well as in vitro. Olfactory placodes form at embryonic day 3 (ED3) in the anterior facial ectoderm and invaginate to form the nasal pits. At ED5, the epidermal ectoderm and respiratory epithelium show the same dense cytokeratin immunoreaction.
View Article and Find Full Text PDFThe workshop on Hair Follicle Stem Cells brought together investigators who have used a variety of approaches to try to understand the biology of follicular epithelial stem cells, and the role that these cells play in regulating the hair cycle. One of the main concepts to emerge from this workshop is that follicular epithelial stem cells are multipotent, capable of giving rise not only to all the cell types of the hair, but also to the epidermis and the sebaceous gland. Furthermore, such multipotent stem cells may represent the ultimate epidermal stem cell.
View Article and Find Full Text PDF