Publications by authors named "Genevieve Bordeleau"

Implementing sustainable groundwater resources management in coastal areas is challenging due to the negative impacts of anthropogenic stressors and various interactions between groundwater and surface water. This study focuses on nitrate contamination and transport via groundwater-surface water exchange in a Mediterranean coastal area (Guerbes-Senhadja region, Algeria) that is heavily affected by anthropogenic activities. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δH, δO, H, δN and δO), is combined with a Bayesian isotope mixing model (MixSIAR) to (i) elucidate the nitrate sources and their apportionments in water systems, and (ii) describe potential interactions between groundwater and surface water.

View Article and Find Full Text PDF

This study focuses on coastal aquifers subject to uncontrolled land use development by investigating the combined effects of seawater intrusion and nitrate contamination. The research is undertaken in a Mediterranean coastal agricultural area (Plain of the El-Nil River, Algeria), where water resources are heavily impacted by anthropogenic activities. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δH, δO, δN and δO), is combined with a hydrochemical facies evolution diagram, and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination with its inland intrusion, and distinguish the nitrate sources and their apportionment.

View Article and Find Full Text PDF

Methane concentrations and isotopic composition in groundwater are the focus of a growing number of studies. However, concerns are often expressed regarding the integrity of samples, as methane is very volatile and may partially exsolve during sample lifting in the well and transfer to sampling containers. While issues concerning bottle-filling techniques have already been documented, this paper documents a comparison of methane concentration and isotopic composition obtained with three devices commonly used to retrieve water samples from dedicated observation wells.

View Article and Find Full Text PDF

Nitroglycerin (NG) is often present in soils and sometimes in pore water at antitank firing positions due to incomplete combustion of propellants. Various degradation processes can contribute to the natural attenuation of NG in soils and pore water, thus reducing the risks of groundwater contamination. However, until now these processes have been sparsely documented.

View Article and Find Full Text PDF

The presence of nitroglycerin (NG) has been reported in shallow soils and pore water of several military training ranges. In this context, NG concentrations can be reduced through various natural attenuation processes, but these have not been thoroughly documented. This study aimed at investigating the role of soil organic matter (SOM) in the natural attenuation of NG, under aerobic conditions typical of shallow soils.

View Article and Find Full Text PDF

Laboratory and field-scale pilot experiments were performed to evaluate the feasibility of chloroform degradation by alkaline hydrolysis and the potential of δ(13)C values to assess this induced reaction process at contaminated sites. In batch experiments, alkaline conditions were induced by adding crushed concrete (pH 12.33 ± 0.

View Article and Find Full Text PDF

Nitroglycerin (NG) and nitrocellulose (NC) are constituents of double-base propellants used notably for firing antitank ammunitions. Nitroglycerin was detected in soil and water samples from the unsaturated zone (pore water) at an active antitank firing position, where the presence of high nitrate (NO3(-)) concentrations suggests that natural attenuation of NG is occurring. However, concentrations alone cannot assess if NG is the source of NO3(-), nor can they determine which degradation processes are involved.

View Article and Find Full Text PDF

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and nitroglycerin (NG) are two energetic materials commonly found in the environment on military training ranges. They are deposited on the ground in the form of solid particles, which can then dissolve in infiltration water or in surface water bodies. The objective of this study was to evaluate whether photolysis by sunlight can significantly contribute to the natural attenuation of RDX and NG (as solid particles or dissolved in surface water) at mid-northern latitudes, where training ranges of Canada and many European countries are located.

View Article and Find Full Text PDF

The environmental fate of nitroglycerin (NG) in the unsaturated zone was evaluated in the context of double-base propellant residue deposition at anti-tank training ranges. Fresh propellant residues were collected during live anti-tank training. Surface soils, sub-surface soils and water samples from the unsaturated zone were collected at an active anti-tank range, and at a legacy site where NG-based propellants have been used.

View Article and Find Full Text PDF

A large number of laboratory studies have reported nitrite (NO(2)(-)) and nitrate (NO(3)(-)) to be among the most common degradation products of the high explosives nitroglycerin (NG) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Additionally, several field studies have reported the presence of RDX or NG along with NO(3)(-) in groundwater near production plants. Most studies, however, did not specify whether their NO(2)(-) and NO(3)(-) analyses were performed on samples which also contained RDX or NG.

View Article and Find Full Text PDF

Nitrate is one of the most common contaminants in shallow groundwater, and many sources may contribute to the nitrate load within an aquifer. Groundwater nitrate plumes have been detected at several ammunition production sites. However, the presence of multiple potential sources and the lack of existing isotopic data concerning explosive degradation-induced nitrate constitute a limitation when it comes to linking both types of contaminants.

View Article and Find Full Text PDF

Within Canada, it has been recognized in the last decade that military training activities may have impacts on the environmental quality of training ranges. However, impacts of activities specific to Air Force Bases have not yet been intensely documented. A hydrogeological study was accomplished at the Cold Lake Air Weapons Range, Alberta, to evaluate the environmental impacts of using bombs, rockets, strafing, and open burning/open detonation (OB/OD) on the quality of soil, ground water, surface water, and lake sediments.

View Article and Find Full Text PDF