Background: Some imidazoline compounds have pleiotropic effects including cell death in vitro. We examined the antiproliferative action of a novel imidazoline compound S43126, and the role of the I1-imidazoline receptor, ROS, MAPKs and caspases in S43126-induced cell death.
Methods: PC 12 cells were treated with various concentrations of S43126 in the presence or absence of several ligands, and the effects on cell proliferation, ROS levels, and apoptosis were evaluated using Trypan Blue, Alamar Blue, Western blot and microscopy.
One of the most important biomaterial characteristics involved in bacterial adhesion on intraocular lenses (IOLs) is hydrophobicity. We calculated the hydrophobicity parameters of IOLs made of 6 different materials (polymethylmethacrylate, PMMA, heparin surface-modified PMMA, HSM-PMMA, silicone, hydrophilic and hydrophobic acrylics and collamer). Values of IOL surface free energy components were determined from contact angle measurements, using the Fowkes, Owens-Wendt and Good-van Oss calculations.
View Article and Find Full Text PDFThe I-imidazoline receptor is a novel drug target for hypertension and insulin resistance which are major disorders associated with Type II diabetes. In the present study, we examined the effects of a novel imidazoline agonist S43126 on calcium fluxes and insulin secretion from Min6 β-cells. We also examined the effects of S43126 on the induction of IRAS, and phosphorylation of components in the I-imidazoline signaling pathways, namely ERK and PKB.
View Article and Find Full Text PDFThe I(1)-imidazoline receptor is a novel target for drug development for hypertension and insulin resistance, major disorders associated with type 2 diabetes. In the present study, we examined the effects of a novel imidazoline agonist S43126, on phosphorylation of protein kinase B (PKB/Akt) and extracellular signal-regulated kinase (ERK1/2) in PC12 cells. We further examined the effects of S43126 on insulin stimulated PKB and ERK phosphorylation.
View Article and Find Full Text PDFIn this paper we describe the design and synthesis of 18 derivatives of the antimicrobial atovaquone which were substituted at the 3-hydroxy group by ester and ether functions. The compounds were evaluated in vitro for their activity against the growth of Plasmodium falciparum, the malaria causing parasite. All the compounds showed potent activity, with IC(50) values in the range of 1.
View Article and Find Full Text PDFImidazoline derivatives have been reported to show antihyperglycemic activity in vivo. In the present study, we first showed that there was no correlation between the in vivo antidiabetic activity and the in vitro affinities for the I1/I2 binding sites for several substituted aryl imidazolines. Among these compounds, 2-(alpha-cyclohexyl-benzyl)-4,5-dihydro-1H-imidazole 2 exhibited potent antihyperglycemic properties.
View Article and Find Full Text PDF