Publications by authors named "Genevieve Bates"

Heaves is a naturally occurring equine disease that shares many similarities with human asthma, including reversible antigen-induced bronchoconstriction, airway inflammation, and remodeling. The purpose of this study was to determine whether the trachealis muscle is mechanically representative of the peripheral airway smooth muscle (ASM) in an equine model of asthma. Tracheal and peripheral ASM of heaves-affected horses under exacerbation, or under clinical remission of the disease, and control horses were dissected and freed of epithelium to measure unloaded shortening velocity (Vmax), stress (force/cross-sectional area), methacholine effective concentration at which 50% of the maximum response is obtained, and stiffness.

View Article and Find Full Text PDF

The proteins involved in smooth muscle's molecular contractile mechanism - the anti-parallel motion of actin and myosin filaments driven by myosin heads interacting with actin - are found as different isoforms. While their expression levels are altered in disease states, their relevance to the mechanical interaction of myosin with actin is not sufficiently understood. Here, we analyzed in vitro actin filament propulsion by smooth muscle myosin for [Formula: see text]-actin ([Formula: see text]A), [Formula: see text]-actin-tropomyosin-[Formula: see text] ([Formula: see text]A-Tm[Formula: see text]), [Formula: see text]-actin-tropomyosin-[Formula: see text] ([Formula: see text]A-Tm[Formula: see text]), [Formula: see text]-actin ([Formula: see text]A), [Formula: see text]-actin-tropomyosin-[Formula: see text] ([Formula: see text]A-Tm[Formula: see text]), and [Formula: see text]-actin-tropomoysin-[Formula: see text] ([Formula: see text]A-Tm[Formula: see text]).

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal disorder caused by defects in the dystrophin gene, which leads to respiratory or cardiac muscle failure. Lack of dystrophin predisposes the muscle cell sarcolemmal membrane to mechanical damage. However, the role of myosin in this muscle weakness has been poorly addressed.

View Article and Find Full Text PDF

Caffeine is sometimes used in cell physiological studies to release internally stored Ca(2+). We obtained evidence that caffeine may also act through a different mechanism that has not been previously described and sought to examine this in greater detail. We ruled out a role for phosphodiesterase (PDE) inhibition, since the effect was 1) not reversed by inhibiting PKA or adenylate cyclase; 2) not exacerbated by inhibiting PDE4; and 3) not mimicked by submillimolar caffeine nor theophylline, both of which are sufficient to inhibit PDE.

View Article and Find Full Text PDF