Publications by authors named "Genevieve Abbruzzese"

Purpose: There is an unmet need for identifying novel biomarkers in Barrett's esophagus that could stratify patients with regards to neoplastic progression. We investigate the expression patterns of extracellular matrix (ECM) molecules in Barrett's esophagus and Barrett's esophagus-related neoplasia, and assess their value as biomarkers for the diagnosis of Barrett's esophagus-related neoplasia and to predict neoplastic progression.

Experimental Design: Gene-expression analyses of ECM matrisome gene sets were performed using publicly available data on human Barrett's esophagus, Barrett's esophagus-related dysplasia, esophageal adenocarcinoma (ADCA) and normal esophagus.

View Article and Find Full Text PDF

IQGAP1 is a scaffold protein involved in a range of cellular activities, including migration, invasion, adhesion and proliferation. It is also oncogenic in a variety of cancers, promoting primary tumor growth and invasiveness. However, the role of IQGAP1 in tumor progression and metastasis remains unclear.

View Article and Find Full Text PDF

Metastasis causes most cancer-related deaths, and one poorly understood aspect of metastatic cancer is the adaptability of cells from a primary tumor to create new niches and survive in multiple, different secondary sites. We used quantitative mass spectrometry to analyze the extracellular matrix (ECM), a critical component of metastatic niches, in metastases to the brain, lungs, liver, and bone marrow, all derived from parental MDA-MB-231 triple-negative breast cancer cells. Tumor and stromal cells cooperated in forming niches; stromal cells produced predominantly core, structural ECM proteins and tumor cells produced a diverse array of ECM-associated proteins, including secreted factors and modulators of the matrix.

View Article and Find Full Text PDF

Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration.

View Article and Find Full Text PDF

Cadherin receptors have a well-established role in cell-cell adhesion, cell polarization and differentiation. However, some cadherins also promote cell and tissue movement during embryonic development and tumour progression. In particular, cadherin-11 is upregulated during tumour and inflammatory cell invasion, but the mechanisms underlying cadherin-11 stimulated cell migration are still incompletely understood.

View Article and Find Full Text PDF

The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell-cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration.

View Article and Find Full Text PDF

Cranial neural crest (CNC) cells are a transient population of stem cells that originate at the border of the neural plate and the epidermis, and migrate ventrally to contribute to most of the facial structures including bones, cartilage, muscles and ganglia. ADAM13 is a cell surface metalloprotease that is essential for CNC cell migration. Here, we show in Xenopus laevis embryos that the Wnt receptor Fz4 binds to the cysteine-rich domain of ADAM13 and negatively regulates its proteolytic activity in vivo.

View Article and Find Full Text PDF

ADAMs are cell surface metalloproteases that control multiple biological processes by cleaving signaling and adhesion molecules. ADAM13 controls cranial neural crest (CNC) cell migration both by cleaving cadherin-11 to release a promigratory extracellular fragment and by controlling expression of multiple genes via its cytoplasmic domain. The latter activity is regulated by γ-secretase cleavage and the translocation of the cytoplasmic domain into the nucleus.

View Article and Find Full Text PDF

The cranial neural crest (CNC) is a population of cells that arises from the lateral part of the developing brain, migrates ventrally and coordinates the entire craniofacial development of vertebrates. Many molecules are involved in CNC migration including the transmembrane metalloproteases ADAM13 and 19. We have previously shown that these ADAMs cleave a number of extracellular proteins and modify the transcription of a number of genes, and that both of these activities are important for cell migration.

View Article and Find Full Text PDF

Fluorescent proteins have revolutionized modern biology with their ability to report the presence of tagged proteins in living systems. Although several fluorescent proteins have been described in which the excitation and emission properties can be modulated by external triggers, no fluorescent proteins have been described that can be activated from a silent dark state to a bright fluorescent state directly by the activity of an enzyme. We have developed a version of GFP in which fluorescence is completely quenched by appendage of a hydrophobic quenching peptide that tetramerizes GFP and prevents maturation of the chromophore.

View Article and Find Full Text PDF

ADAMs are transmembrane metalloproteases that control cell behavior by cleaving both cell adhesion and signaling molecules. The cytoplasmic domain of ADAMs can regulate the proteolytic activity by controlling the subcellular localization and/or the activation of the protease domain. Here, we show that the cytoplasmic domain of ADAM13 is cleaved and translocates into the nucleus.

View Article and Find Full Text PDF

Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington's and Alzheimer's diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases; however, the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60's and 130's helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase.

View Article and Find Full Text PDF