Maintaining high sensitivity while limiting false positives is a key challenge in peptide identification from mass spectrometry data. Here, we investigate the effects of integrating the machine learning-based postprocessor Percolator into our spectral library searching tool COSS (CompOmics Spectral library Searching tool). To evaluate the effects of this postprocessing, we have used 40 data sets from 2 different projects and have searched these against the NIST and MassIVE spectral libraries.
View Article and Find Full Text PDFSpectral similarity searching to identify peptide-derived MS/MS spectra is a promising technique, and different spectrum similarity search tools have therefore been developed. Each of these tools, however, comes with some limitations, mainly because of low processing speed and issues with handling large databases. Furthermore, the number of spectral data formats supported is typically limited, which also creates a threshold to adoption.
View Article and Find Full Text PDFChemical cross-linking analyzed by mass spectrometry (XL-MS) has become an important tool in unravelling protein structure, dynamics, and complex formation. Because the analysis of cross-linked proteins with mass spectrometry results in specific computational challenges, many computational tools have been developed to identify cross-linked peptides from mass spectra and subsequently interpret the identified cross-links within their structural context. In this review, we will provide an overview of the different tools that are currently available to tackle the computational part of an XL-MS experiment.
View Article and Find Full Text PDF