Traumatic brain injury (TBI) is a major cause of mortality and morbidity. Various attempts have been made to replicate clinical TBI using animal models. The fluid-percussion model (FP) is one of the oldest and most commonly used models of experimentally induced TBI.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
November 2008
Traumatic brain injury (TBI) causes both direct and delayed tissue damage. The latter is associated with secondary biochemical changes such as cell cycle activation, which leads to neuronal death, inflammation, and glial scarring. Flavopiridol--a cyclin-dependent kinase (CDK) inhibitor that is neither specific nor selective--is neuroprotective.
View Article and Find Full Text PDFHypoxic/ischemic (HI) brain injury in newborn full-term and premature infants is a common and pervasive source of life time disabilities in cognitive and locomotor function. In the adult, HI induces glutamate release and excitotoxic cell death dependent on NMDA receptor activation. In animal models of the premature human infant, glutamate is also released following HI, but neurons are largely insensitive to NMDA or AMPA/kainic acid (KA) receptor-mediated damage.
View Article and Find Full Text PDFThe developing hippocampus of both males and females is exposed to high levels of the gonadal steroid estradiol. The impact of this estradiol exposure on developing hippocampal neurons is essentially unknown. In the rat, the newborn hippocampus is relatively insensitive to excitotoxic brain injury, which in adults is associated with the release of amino acids, in particular glutamate, resulting in a significant increase in intracellular calcium and eventual cell death.
View Article and Find Full Text PDFPerinatal brain injury is associated with the release of amino acids, principally glutamate and GABA, resulting in massive increases in intracellular calcium and eventual cell death. We have previously demonstrated that independent administration of kainic acid (KA), an AMPA/kainate receptor agonist, or muscimol, a GABA(A) receptor agonist, to newborn rats results in hippocampal damage [Hilton, G.D.
View Article and Find Full Text PDFBrain Res Dev Brain Res
June 2004
Perinatal brain injury, consequent to hypoxic/ischemic events, is associated with the release of excess excitatory neurotransmitters, including glutamate. We have previously shown that administration of a glutamate receptor agonist, kainic acid (KA), to postnatal day 0 (PN0) and PN1 rats results in damage selective to the dentate gyrus of females. Pretreatment with the gonadal steroid estradiol prevents KA-induced damage to the female dentate gyrus.
View Article and Find Full Text PDF