In real-world applications, multiple robots need to be dynamically deployed to their appropriate locations as teams while the distance cost between robots and goals is minimized, which is known to be an NP-hard problem. In this paper, a new framework of team-based multi-robot task allocation and path planning is developed for robot exploration missions through a convex optimization-based distance optimal model. A new distance optimal model is proposed to minimize the traveled distance between robots and their goals.
View Article and Find Full Text PDFIn this article, a novel heterogeneous fusion of convolutional neural networks that combined an RGB camera and an active mmWave radar sensor for the smart parking meter is proposed. In general, the parking fee collector on the street outdoor surroundings by traffic flows, shadows, and reflections makes it an exceedingly tough task to identify street parking regions. The proposed heterogeneous fusion convolutional neural networks combine an active radar sensor and image input with specific geometric area, allowing them to detect the parking region against different tough conditions such as rain, fog, dust, snow, glare, and traffic flow.
View Article and Find Full Text PDFWith the introduction of autonomy into the precision agriculture process, environmental exploration, disaster response, and other fields, one of the global demands is to navigate autonomous vehicles to completely cover entire unknown environments. In the previous complete coverage path planning (CCPP) research, however, autonomous vehicles need to consider mapping, obstacle avoidance, and route planning simultaneously during operating in the workspace, which results in an extremely complicated and computationally expensive navigation system. In this study, a new framework is developed in light of a hierarchical manner with the obtained environmental information and gradually solving navigation problems layer by layer, consisting of environmental mapping, path generation, CCPP, and dynamic obstacle avoidance.
View Article and Find Full Text PDFA dynamic time warping (DTW) algorithm has been suggested for the purpose of devising a motion-sensitive microelectronic system for the realization of remote motion abnormality detection. In combination with an inertial measurement unit (IMU), the algorithm is potentially applicable for remotely monitoring patients who are at risk of certain exceptional motions. The fixed interval signal sampling mechanism has normally been adopted when devising motion detection systems; however, dynamically capturing the particular motion patterns from the IMU motion sensor can be difficult.
View Article and Find Full Text PDFTelemed J E Health
November 2015
Introduction: Telemedicine has become a prevalent topic in recent years, and several telemedicine systems have been proposed; however, such systems are an unsuitable fit for the daily requirements of users.
Materials And Methods: The system proposed in this study was developed as a set-top box integrated with the Android™ (Google, Mountain View, CA) operating system to provide a convenient and user-friendly interface. The proposed system can assist with family healthcare management, telemedicine service delivery, and information exchange among hospitals.
Int J Environ Res Public Health
April 2014
Cardiovascular patients consult doctors for advice regarding regular exercise, whereas obese patients must self-manage their weight. Because a system for permanently monitoring and tracking patients' exercise intensities and workouts is necessary, a system for recognizing gait and estimating walking exercise intensity was proposed. For gait recognition analysis, αβ filters were used to improve the recognition of athletic attitude.
View Article and Find Full Text PDF