Publications by authors named "Gene Hilton"

X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while addressing the limitations of conventional tomography tools.

View Article and Find Full Text PDF

We describe the newest generation of the SLAC Microresonator RF (SMuRF) electronics, a warm digital control and readout system for microwave-frequency resonator-based cryogenic detector and multiplexer systems, such as microwave superconducting quantum interference device multiplexers (μmux) or microwave kinetic inductance detectors. Ultra-sensitive measurements in particle physics and astronomy increasingly rely on large arrays of cryogenic sensors, which in turn necessitate highly multiplexed readout and accompanying room-temperature electronics. Microwave-frequency resonators are a popular tool for cryogenic multiplexing, with the potential to multiplex thousands of detector channels on one readout line.

View Article and Find Full Text PDF

Superconducting qubits are a leading platform for scalable quantum computing and quantum error correction. One feature of this platform is the ability to perform projective measurements orders of magnitude more quickly than qubit decoherence times. Such measurements are enabled by the use of quantum-limited parametric amplifiers in conjunction with ferrite circulators-magnetic devices which provide isolation from noise and decoherence due to amplifier backaction.

View Article and Find Full Text PDF

The manipulation of quantum states of light holds the potential to enhance searches for fundamental physics. Only recently has the maturation of quantum squeezing technology coincided with the emergence of fundamental physics searches that are limited by quantum uncertainty. In particular, the quantum chromodynamics axion provides a possible solution to two of the greatest outstanding problems in fundamental physics: the strong-CP (charge-parity) problem of quantum chromodynamics and the unknown nature of dark matter.

View Article and Find Full Text PDF

Transition-edge sensors (TESs) are two-dimensional superconducting films utilized as highly sensitive detectors of energy or power. These detectors are voltage biased in the superconducting-normal transition where the film resistance is both finite and a strong function of temperature. Unfortunately, the amount of electrical noise observed in TESs exceeds the predictions of existing noise theories.

View Article and Find Full Text PDF

Feature sizes in integrated circuits have decreased substantially over time, and it has become increasingly difficult to three-dimensionally image these complex circuits after fabrication. This can be important for process development, defect analysis, and detection of unexpected structures in externally sourced chips, among other applications. Here, we report on a non-destructive, tabletop approach that addresses this imaging problem through x-ray tomography, which we uniquely realize with an instrument that combines a scanning electron microscope (SEM) with a transition-edge sensor (TES) x-ray spectrometer.

View Article and Find Full Text PDF

We present results obtained with a new soft X-ray spectrometer based on transition-edge sensors (TESs) composed of Mo/Cu bilayers coupled to bismuth absorbers. This spectrometer simultaneously provides excellent energy resolution, high detection efficiency, and broadband spectral coverage. The new spectrometer is optimized for incident X-ray energies below 2 keV.

View Article and Find Full Text PDF

We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this technique on a 101-element microwave kinetic inductance detector (MKID) array made from a titanium-nitride superconducting film.

View Article and Find Full Text PDF

The development of a superconducting analog to the transistor with extremely low power dissipation will accelerate the proliferation of low-temperature circuitry operating in the milliKelvin regime. The thin-film, magnetically actuated cryotron switch is a candidate building block for more complicated and flexible milliKelvin circuitry. We demonstrate its utility for implementing reconfigurable circuitry by integrating a cryotron switch into flux-summed code-division SQUID multiplexed readout for large arrays of transition-edge-sensor (TES) microcalorimeters.

View Article and Find Full Text PDF

We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples.

View Article and Find Full Text PDF

The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the cryogenic half-wave plate rotation mechanisms developed for Spider, a telescope that studied the cosmic microwave background.
  • These mechanisms function at extremely low temperatures and feature a compact design with a large clear aperture for optimal performance.
  • A worm gear driven by a cryogenic stepper motor ensures precise adjustment and stability of the telescope's orientation, supported by an optical encoder for accurate angle monitoring.
View Article and Find Full Text PDF

Low-temperature superconducting circuits have become important for many scientific applications. However, there are presently no high current-capacity switches (~1 mA) with low power dissipation for sub-Kelvin operation. One candidate for a sub-Kelvin switch is the cryotron, a device in which the superconductivity of a wire is suppressed with a magnetic field.

View Article and Find Full Text PDF

Purpose: Prototype phantoms were designed, constructed, and characterized for the purpose of calibrating ultralow field magnetic resonance imaging (ULF MRI) systems. The phantoms were designed to measure spatial resolution and to quantify sensitivity to systematic variation of proton density and relaxation time, T1 .

Methods: The phantoms were characterized first with conventional magnetic resonance scanners at 1.

View Article and Find Full Text PDF

SCUBA-2 is a submillimeter camera being built for the James Clerk Maxwell Telescope in Hawaii. Bringing CCD style imaging to the submillimeter for the first time, with over 10000 pixels, it will provide a revolutionary improvement in sensitivity and mapping speed. We present results of the first tests on a prototype 1280 pixel SCUBA-2 subarray; the full instrument will be made up of eight such subarrays.

View Article and Find Full Text PDF