Bernal (ABA stacking order) and rhombohedral (ABC) trilayer graphene (3LG) are characterized by Raman spectroscopy. From a systematic experimental and theoretical analysis of the Raman modes in both of these 3LGs, we show that the G band, G' (2D) band, and the intermediate-frequency combination modes of 3LGs are sensitive to the stacking order of 3LG. The phonon wavevector q, that gives the double resonance Raman spectra is larger in ABC than ABA, which is the reason why we get the different Raman frequencies and their spectral widths for ABA and ABC 3LG.
View Article and Find Full Text PDFThough graphene has been intensively studied by Raman spectroscopy, in this letter, we report a study of the second-order overtone and combination Raman modes in a mostly unexplored frequency range of 1690-2150 cm(-1) in nonsuspended commensurate (AB-stacked), incommensurate (folded) and suspended graphene layers. On the basis of the double resonance theory, four dominant modes in this range have been assigned to (i) the second order out-of-plane transverse mode (2oTO or M band), (ii) the combinational modes of in-plane transverse acoustic mode and longitudinal optical mode (iTA+LO), (iii) in-plane transverse optical mode and longitudinal acoustic mode (iTO+LA), and (iv) longitudinal optical mode and longitudinal acoustic mode (LO+LA). Differing from AB-stacked bilayer graphene or few layer graphene, single layer graphene shows the disappearance of the M band.
View Article and Find Full Text PDF