We studied epitaxial GaAs samples doped with Ge and Sn up to 1×1019 cm -3, which were stored in a dry and dark environment for 26 years. The optical response of the GaAs samples was determined through the photoluminescence and photoreflectance techniques, taken at different times: just after their fabrication in 1995, 2001 and 2021. The evolution of defects formed by the action of O 2 in the samples and their correlation with doping with Ge and Sn impurities were studied.
View Article and Find Full Text PDFThe aging dynamics of materials used to build the active part of optoelectronic devices is a topic of current interest. We studied epitaxial samples of GaAs doped with Ge and Sn up to 1×1019 cm, which were stored in a dry and dark environment for 26 years. Photoluminescence spectra were taken in three periods: 1995, 2001 and 2021.
View Article and Find Full Text PDFWe calculate energies of shallow donors confined in a rolled-up quantum well in the presence of the electric field by solving numerically the Schrödinger equation in natural curvilinear coordinates. It is found that the curves of density of states (DOSs) are very sensitive to the variation of the donor position, the geometry of the spiral and the applied electric field value. Novel results for dependencies of donor's dipole moment and its polarizability on the electric field strength and its orientation, for different donor positions are presented.
View Article and Find Full Text PDFThis document presents a dataset on various stoichiometric Niobium nitrides compounds under different pressures, which have been identified by first-principles calculations in combination with an evolutionary algorithm methodology implemented in the USPEX code in its variable-composition mode. The feature of this methodology is to find the ground state or metastable structures with only the knowledge of chemical composition at given pressure conditions and predict through all possible structures, not relying on any prior known structural information. We have successfully predicted the crystal structures and phase transitions of at pressures up to 100 GPa.
View Article and Find Full Text PDFWe analyze the energy spectrum of a positively charged exciton confined in a semiconductor heterostructure formed by two vertically coupled, axially symmetrical type II quantum dots located close to each other. The electron in the structure is mainly located inside the dots, while the holes generally move in the exterior region close to the symmetry axis. The solutions of the Schrödinger equation are obtained by a variational separation of variables in the adiabatic limit.
View Article and Find Full Text PDFWe consider a model of hydrogen-like artificial molecule formed by two vertically coupled quantum dots in the shape of axially symmetrical thin layers with on-axis single donor impurity in each of them and with the magnetic field directed along the symmetry axis. We present numerical results for energies of some low-lying levels as functions of the magnetic field applied along the symmetry axis for different quantum dot heights, radii, and separations between them. The evolution of the Aharonov-Bohm oscillations of the energy levels with the increase of the separation between dots is analyzed.
View Article and Find Full Text PDFThe electronic states of a singly ionized on-axis double-donor complex (D2+) confined in two identical vertically coupled, axially symmetrical quantum dots in a threading magnetic field are calculated. The solutions of the Schrödinger equation are obtained by a variational separation of variables in the adiabatic limit. Numerical results are shown for bonding and antibonding lowest-lying artificial molecule states corresponding to different quantum dot morphologies, dimensions, separation between them, thicknesses of the wetting layers, and magnetic field strength.
View Article and Find Full Text PDF