Publications by authors named "Genaro A Paredes-Juarez"

Mexico is a center of diversification for the Cactaceae family, with 69% of the species recorded as endemic. Certain members of the Cactaceae family have been chemically analyzed to relate their medicinal use with their phytochemistry. Here, the phytochemistry and bioactivity of ethanol extracts of , , and were evaluated.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: A third part of the world population has been exposed to the pathogen Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB). TB is a deadly disease, and its treatment has been hampered because of the lack of new antibiotics or the development of new antimycobacterial agents against this pathogen. The situation is aggravated because of the appearance of multidrug-resistant strains.

View Article and Find Full Text PDF

Soft, untethered microrobots composed of biocompatible materials for completing micromanipulation and drug delivery tasks in lab-on-a-chip and medical scenarios are currently being developed. Alginate holds significant potential in medical microrobotics due to its biocompatibility, biodegradability, and drug encapsulation capabilities. Here, we describe the synthesis of MANiACs-Magnetically Aligned Nanorods in Alginate Capsules-for use as untethered microrobotic surface tumblers, demonstrating magnetically guided lateral tumbling via rotating magnetic fields.

View Article and Find Full Text PDF

The active and passive electrophysiological properties of blood and tissue have been utilized in a vast array of clinical techniques to noninvasively characterize anatomy and physiology and to diagnose a wide variety of pathologies. However, the accuracy and spatial resolution of such techniques are limited by several factors, including an ill-posed inverse problem, which determines biological parameters and signal sources from surface potentials. Here, we propose a method to noninvasively modulate tissue conductivity by aligning superparamagnetic iron oxide-loaded erythrocytes with an oscillating magnetic field.

View Article and Find Full Text PDF

Aims/hypothesis: The immunomodulatory capacity of adipose tissue-derived stromal cells (ASCs) is relevant for next-generation cell therapies that aim to reverse tissue dysfunction such as that caused by diabetes. Pericyte dropout from retinal capillaries underlies diabetic retinopathy and the subsequent aberrant angiogenesis.

Methods: We investigated the pericytic function of ASCs after intravitreal injection of ASCs in mice with retinopathy of prematurity as a model for clinical diabetic retinopathy.

View Article and Find Full Text PDF

Introduction: Type 1 diabetes mellitus (T1DM) is an autoimmune disease in which the pancreas produces insufficient amounts of insulin. T1DM patients require exogenous sources of insulin to maintain euglycemia. Transplantation of naked or microencapsulated pancreatic islets represents an alternative paradigm to obtain an autonomous regulation of blood glucose levels in a controlled and personalized fashion.

View Article and Find Full Text PDF

This chapter presents a description of standardized techniques used routinely in our laboratory to encapsulate different cell types using the alginate-PLL-alginate immunoisolation system. Given the importance of noninvasive tracking of encapsulated cell transplants, we present a detailed guidance to achieve maximum efficiency and functionality of the capsule preparations for optimal tracking posttransplantation. The provided protocols cover tracking of encapsulated cells using magnetic resonance (MR), X-ray, computed tomography (CT), and ultrasound (US) imaging.

View Article and Find Full Text PDF

The liver is currently the site for transplantation of islets in humans. This is not optimal for islets, but alternative sites in humans are not available. Polymeric scaffolds in surgically accessible areas are a solution.

View Article and Find Full Text PDF

In between the period of transplantation and revascularization, pancreatic islets are exposed to low-oxygen and low-nutrient conditions. In the present study we mimicked those conditions in vitro to study the involvement of different cell death processes, release of danger-associated molecular patterns (DAMP), and associated in vitro immune activation. Under low-oxygen and low-nutrient conditions, apoptosis, autophagy and necroptosis occur in human islets.

View Article and Find Full Text PDF

Large-scale application of alginate-poly-L-lysine (alginate-PLL) capsules used for microencapsulation of living cells is hampered by varying degrees of success, caused by tissue responses against the capsules in the host. A major cause is proinflammatory PLL which is applied at the surface to provide semipermeable properties and immunoprotection. In this study, we investigated whether application of poly(ethylene glycol)-block-poly(L-lysine hydrochloride) diblock copolymers (PEG-b-PLL) can reduce the responses against PLL on alginate-matrices.

View Article and Find Full Text PDF

Islets encapsulated in immunoprotective microcapsules are being proposed as an alternative for insulin therapy for treatment of type 1 diabetes. Many materials for producing microcapsules have been proposed but only alginate does currently qualify as ready for clinical application. However, many different alginate-based capsule systems do exist.

View Article and Find Full Text PDF

Transplantation of microencapsulated cells has been proposed as a cure for many types of endocrine disorders. Alginate-based microcapsules have been used in many of the feasibility studied addressing cure of the endocrine disorders, and different cancer types. Despite years of intensive research it is still not completely understood which factors have to be controlled and documented for achieving adequate mechanical stability.

View Article and Find Full Text PDF

Alginates are widely used in tissue engineering technologies, e.g., in cell encapsulation, in drug delivery and various immobilization procedures.

View Article and Find Full Text PDF

Alginate-based microcapsules are used for immunoisolation of cells to release therapeutics on a minute-to-minute basis. Unfortunately, alginate-based microcapsules are suffering from varying degrees of success, which is usually attributed to differences in tissue responses. This results in failure of the therapeutic cells.

View Article and Find Full Text PDF