Publications by authors named "Gen-Ichi Atsumi"

Article Synopsis
  • - Primary cilia are immotile structures found on most cell types during the G phase of the cell cycle, acting as sensory organelles that help regulate cell growth and organ formation.
  • - They contain specific receptors and ion channels due to the diffusion barrier at their base, which contributes to their role in processes like cell proliferation and differentiation, particularly in organs like bone, brain, and kidney.
  • - Recent research highlights the importance of the protein 4.1G in the formation of primary cilia and its involvement in signaling pathways that promote the differentiation of preosteoblasts into osteoblasts, essential for bone development.
View Article and Find Full Text PDF

The primary cilium undergoes cell cycle-dependent assembly and disassembly. Dysregulated ciliary dynamics are associated with several pathological conditions called ciliopathies. Previous studies showed that the localization of phosphorylated Tctex-1 at Thr94 (T94) at the ciliary base critically regulates ciliary resorption by accelerating actin remodeling and ciliary pocket membrane endocytosis.

View Article and Find Full Text PDF

Obesity is associated with the risk of venous thromboembolism. Thrombi are constantly formed via the coagulation cascade and degraded by the fibrinolytic system, so they tend to form in obese individuals. Adipocytes are involved in thrombus formation in obesity, but it is not clear whether bioactive factors from adipocytes directly initiate or enhance coagulation and thrombosis.

View Article and Find Full Text PDF

In the endoplasmic reticulum (ER), accumulation of abnormal proteins with malformed higher-order structures activates signaling pathways (inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 (XBP-1) pathway, protein kinase RNA-activated-like endoplasmic reticulum kinase (PERK)/CCAAT/enhancer binding protein-homologous protein (CHOP) pathway and activating transcription factor 6α (ATF6α) pathway) that result in a cellular response suppressing the production of abnormal proteins or inducing apoptosis. These responses are collectively known as the unfolded protein response (UPR). Recently, it has been suggested that the UPR induced by saturated fatty acids in hepatocytes and pancreatic β cells is involved in the development of metabolic diseases such as diabetes.

View Article and Find Full Text PDF

The dietary intake of elaidate (elaidic acid), a trans-fatty acid, is associated with the development of various diseases. Since elaidate is a C18 unsaturated fatty acid with a steric structure similar to that of a C18 saturated fatty acid (stearate), we previously revealed that insulin-dependent glucose uptake was impaired in adipocytes exposed to elaidate prior to and during differentiation similar to stearate. However, it is still unknown whether the mechanism of impairment of insulin-dependent glucose uptake due to elaidate is similar to that of stearate.

View Article and Find Full Text PDF

Protein expression in human umbilical vein endothelial cells (HUVECs) is a useful indicator of maternal condition and the intrauterine environment during pregnancy. Therefore, we investigated protein expression in HUVECs obtained from patients with gestational diabetes mellitus (GDM). HUVECs were prepared from the umbilical cords of GDM patients and controls who underwent planned cesarean section between 2013 and 2014 at Teikyo University Hospital (Tokyo, Japan).

View Article and Find Full Text PDF

Type 2 diabetic Tsumura, Suzuki, obese, diabetes (TSOD) mice gradually gain weight as compared to corresponding Tsumura, Suzuki, non-obesity (TSNO) control mice, and develop insulin resistance. Although development of type 2 diabetes mellitus is associated with dysfunction of adipocytes, little is known about the properties of adipocytes from TSOD mice. Therefore, we attempted to remove intracorporeal factors and elucidate inherent properties of adipocytes of TSOD mice using adipocytes differentiated from mouse embryonic fibroblasts (MEFs) in vitro.

View Article and Find Full Text PDF

Chrysin suppresses the TNFα-induced increase in the secretion of plasma plasminogen activator inhibitor 1 (PAl-1), a risk factor for thrombotic diseases, from human umbilical vein endothelial cells (HUVECs). The present study aimed to determine the association between the location of the hydroxyl groups in chrysin.to levels of-PAI-1.

View Article and Find Full Text PDF

Phospholipase A2 (PLA2) plays crucial roles in diverse cellular responses, including phospholipid digestion and metabolism, host defense and signal transduction. PLA2 provides precursors for generation of eicosanoids, such as prostaglandins (PGs) and leukotrienes (LTs), when the cleaved fatty acid is arachidonic acid, platelet-activating factor (PAF) when the sn-1 position of the phosphatidylcholine contains an alkyl ether linkage and some bioactive lysophospholipids, such as lysophosphatidic acid (lysoPA). As overproduction of these lipid mediators causes inflammation and tissue disorders, it is extremely important to understand the mechanisms regulating the expression and functions of PLA2.

View Article and Find Full Text PDF

Background: Brazilian propolis has many biological activities including the ability to help prevent thrombotic diseases, but this particular effect has not been proven. Plasma levels of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, increase under inflammatory conditions such as infection, obesity and atherosclerosis and such elevated levels predispose individuals to a risk of developing thrombotic diseases.

Aim: This study aimed to determine the effects of a diet containing Brazilian propolis on lipopolysaccharide (LPS)-induced increases in plasma PAI-1 levels.

View Article and Find Full Text PDF

Development of type 2 diabetes mellitus and insulin resistance is associated with a quality of dietary fatty acids such as saturated and unsaturated fatty acids. Dietary fatty acids also include transform of unsaturated fatty acids and intake of transform of oleate (elaidate) is associated with cardiovascular disease. However, little is known about the roles of elaidate in insulin responsiveness.

View Article and Find Full Text PDF

Aims: This study aimed to identify new hemostyptics by assessing the coagulation enhancing activity of 114 Chinese herbal extracts in vitro.

Methods: Herbs were boiled in water for 30 min, filtered and then lyophilized filtrates (10 mg/mL) were dissolved in water. Coagulation was assayed as prothrombin time (PT).

View Article and Find Full Text PDF

Obese and diabetic states in humans are associated with an increased incidence of thrombotic diseases caused by various coagulation abnormalities. Genetically obese ob/ob mice produce metabolic abnormalities similar to those associated with type 2 diabetes. However, little is known about their coagulation features or sex differences.

View Article and Find Full Text PDF

Mammalian sialidases (NEU1, NEU2, NEU3 and NEU4) that remove sialic acids from glycoconjugates have been implicated in diverse cellular functions. Human sialidases are involved in the development of various disease states such as cancer, diabetes and arteriosclerosis. Unregulated acidic sialidase NEU1 activity is associated with the pathogenesis of lysosomal storage disorder (LSD) sialidosis, abnormal immune responses and cancer progression.

View Article and Find Full Text PDF

The folk medicine Angelica keiskei (Ashitaba) exhibits antitumor, antioxidant and antidiabetic activities and it has recently attracted attention as a health food. Ashitaba is thought to have antithrombotic properties, but this has not yet been scientifically proven. The elevation of plasma plasminogen activator inhibitor 1 (PAI-1), an inhibitor of fibrinolysis results in a predisposition to the risk of thrombosis.

View Article and Find Full Text PDF

Pollen Typhae is the traditional Chinese herbal medicine widely used to treat the hemorrhagic diseases both by external and oral application. The present study examines the hemostatic properties and its components of Pollen Typhae. Pollen extract significantly reduced prothrombin time (PT), activated partial prothrombin time (APTT) and recalcification time.

View Article and Find Full Text PDF

This study examined circadian variation in coagulation and fibrinolytic parameters among Jcl:ICR, C3H/HeN, BALB/cA, and C57BL/6J strains of mice. Plasma plasminogen activator inhibitor 1 (PAI-1) levels fluctuated in a circadian manner and peaked in accordance with the mRNA levels at the start of the active phase in all strains. Fibrinogen mRNA levels peaked at the start of rest periods in all strains, although plasma fibrinogen levels remained constant.

View Article and Find Full Text PDF

We examined strain differences in numbers of blood cells and their circadian rhythms in male Jcl:ICR, BALB/cA, C57BL/6J and C3H/HeN mice. The total numbers of circulating white blood cells (WBCs) were increased during subjective day and night, and the peaks in the active period were common to all strains. However, the number of WBCs in C3H/HeN mice remained lower and plasma levels of corticosterone (CS) were slightly higher throughout the day compared with the other strains.

View Article and Find Full Text PDF

The Clock gene is a core component of the circadian clock in mammals. We show here that serum levels of triglyceride and free fatty acid were significantly lower in circadian Clock mutant ICR than in wild-type control mice, whereas total cholesterol and glucose levels did not differ. Moreover, an increase in body weight induced by a high-fat diet was attenuated in homozygous Clock mutant mice.

View Article and Find Full Text PDF

CLOCK is a positive component of a transcription/translation-based negative feedback loop of the central circadian oscillator in the suprachiasmatic nucleus in mammals. To examine CLOCK-regulated circadian transcription in peripheral tissues, we performed microarray analyses using liver RNA isolated from Clock mutant mice. We also compared expression profiles with those of Cryptochromes (Cry1 and Cry2) double knockout mice.

View Article and Find Full Text PDF