Publications by authors named "Gen Tashiro"

Xylem vessel elements are hollow cellular units that assemble end-to-end to form a continuous vessel throughout the plant body; the xylem vessel is strengthened by the xylem elements' reinforced secondary cell walls (SCWs). This work aims to unravel the contribution of unknown actors in xylem vessel differentiation using the model in vitro cell culture system of Zinnia elegans differentiating cell cultures and the model in vivo system of Arabidopsis thaliana plants. Tracheary Element Differentiation-Related6 (TED6) and TED7 were selected based on an RNA interference (RNAi) screen in the Zinnia system.

View Article and Find Full Text PDF

The Zinnia elegans cell culture system is a robust and physiologically relevant in vitro system for the study of xylem formation. Freshly isolated mesophyll cells of Zinnia can be hormonally induced to semisynchronously transdifferentiate into tracheary elements (TEs). Although the system has proven to be valuable, its utility is diminished by the lack of an efficient transformation protocol.

View Article and Find Full Text PDF

To understand how plant cell changes gene expression during cell division and after termination of cell division, we analyzed the change of gene expression during the growth of tobacco BY-2 cell lines using a cDNA microarray, which contained about 9,200 expression sequence tag fragments and corresponded to about 7,000 genes. We found that log phase cells predominantly expressed DNA/chromosome duplication gene homologs. In addition, many genes for basic transcription and translation machineries, as well as proteasomal genes, were up-regulated at the log phase.

View Article and Find Full Text PDF

Plants have a unique transdifferentiation mechanism by which differentiated cells can initiate a new program of differentiation. We used a comprehensive analysis of gene expression in an in vitro zinnia (Zinnia elegans L.) culture model system to gather fundamental information about the gene regulation underlying the transdifferentiation of plant cells.

View Article and Find Full Text PDF