Publications by authors named "Gen Shiratsuchi"

For mucociliary clearance of pathogens, tracheal multiciliated epithelial cells (MCCs) organize coordinated beating of cilia, which originate from basal bodies (BBs) with basal feet (BFs) on one side. To clarify the self-organizing mechanism of coordinated intracellular BB-arrays composed of a well-ordered BB-alignment and unidirectional BB-orientation, determined by the direction of BB to BF, we generated double transgenic mice with GFP-centrin2-labeled BBs and mRuby3-Cep128-labeled BFs for long-term, high-resolution, dual-color live-cell imaging in primary-cultured tracheal MCCs. At early timepoints of MCC differentiation, BB-orientation and BB-local alignment antecedently coordinated in an apical microtubule-dependent manner.

View Article and Find Full Text PDF

At the onset of procentriole formation, a structure called the cartwheel is formed adjacent to the pre-existing centriole. SAS-6 proteins are thought to constitute the hub of the cartwheel structure. However, the exact function of the cartwheel in the process of centriole formation has not been well characterized.

View Article and Find Full Text PDF

The microtubule-based spindle is subjected to various mechanical forces during cell division. How the structure generates and responds to forces while maintaining overall integrity is unknown because we have a poor understanding of the relationship between filament architecture and mechanics. Here, to fill this gap, we combine microneedle-based quantitative micromanipulation with high-resolution imaging, simultaneously analyzing forces and local filament motility in the Xenopus meiotic spindle.

View Article and Find Full Text PDF

The decision to commit to the cell cycle is made during G1 through the concerted action of various cyclin-CDK complexes. Not only DNA replication, but also centriole duplication is initiated as cells enter the S-phase. The NIMA-related kinase NEK7 is one of many factors required for proper centriole duplication, as well as for timely cell cycle progression.

View Article and Find Full Text PDF

Abnormalities in maintaining the appropriate number of centrioles could be the origin of genome instability in tumor formation. Recently, we demonstrated that ectopic formation of aberrant centriole-related structures occurs even in the presence of pre-existing centrioles, leading to mitotic spindle defects and possibly contributing to tumorigenesis.

View Article and Find Full Text PDF

Formation of a new centriole adjacent to a pre-existing centriole occurs only once per cell cycle. Despite being crucial for genome integrity, the mechanisms controlling centriole biogenesis remain elusive. Here, we identify RBM14 as a novel suppressor of assembly of centriolar protein complexes.

View Article and Find Full Text PDF

Centriole duplication occurs once per cell cycle through the assembly of daughter centrioles on the side wall of pre-existing centrioles. Little is known about the molecules involved in the assembly of new centrioles. Here, we identify CRC70 as a Chlamydomonas protein with an important role in the accumulation of centriole proteins at the site of assembly.

View Article and Find Full Text PDF