Dissipative structures often appear as an unstable counterpart of ordered structures owing to fluctuations that do not form a homogeneous phase. Even a multiphase mixture may simultaneously undergo one chemical reaction near equilibrium and another one that is far from equilibrium. Here, we observed in real time crystal seed formation and simultaneous nanocrystal aggregation proceeding from Ce complexes to CeO nanoparticles in an acidic aqueous solution, and investigated the resultant hierarchical nanoarchitecture.
View Article and Find Full Text PDFThe spatio-temporal distribution of type-III antifreeze protein (AFP-III) molecules labeled with fluorescent isocyanate (FITC) was visualized at the interfaces between ice and solutions with an FITC-labeled AFP-III (F-AFP-III) concentration of 20-800 μg/mL by fluorescence microscopy. The number density of F-AFP-III on the surface of ice microcrystals was calculated from the calibrated fluorescence intensity. The adsorption of F-AFP-III molecules on the ice crystal surfaces proceeded at a finite rate and then reached the saturation level.
View Article and Find Full Text PDFWe constructed millimeter-wide monolayers consisting of tetragonally ordered BaTiO (BT) nanocubes through the liquid film formation caused by the Marangoni flow in a toluene-hexane binary liquid containing oleic acid. A thin liquid film containing BT nanocubes was overspread on a standing silicon substrate through the condensation of toluene at the advancing front after the preferential evaporation of hexane. Then, the oscillatory droplet formation like "wineglass tears" occurred on the substrate.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2022
SignificanceStep-bunching instability (SBI) is one of the interfacial instabilities driven by self-organization of elementary step flow associated with crystal-growth dynamics, which has been observed in diverse crystalline materials. However, despite theoretical suggestions of its presence, no direct observations of SBI for simple melt growth have been achieved so far. Here, with the aid of a type of optical microscope and its combination with a two-beam interferometer, we realized quantitative in situ observations of the spatiotemporal dynamics of the SBI.
View Article and Find Full Text PDFThe cuticular lipid covering the integument of insects is exposed to the environment and involved in a variety of functions offered by insect body surfaces, ranging from protection against the environment, such as the control of water transpiration, the reduction of abrasive damage, and the prevention of pathogen intrusion, to the communication between insects from intraspecific to interspecific interactions. In comparison with the importance of their physiological functions, there is remarkably little information on the structure and physical property of cuticular lipids on insect body surfaces. The lipid layer on the outer exoskeleton is very thin, estimated on the order of 0.
View Article and Find Full Text PDFX-ray scattering measurements of insect body surface lipids were successfully attempted by using a synchrotron X-ray source. The temperature-dependent structural changes of the cuticular hydrocarbons covering the forewing of an American cockroach were able to be followed, which showed that the majority of the hydrocarbons were in a liquid state even far below the critical temperature of water transpiration through the body surface. The results clearly demonstrated that synchrotron radiation X-ray scattering has the potential to obtain the detailed information about the intact lipid structure and physical properties on insect body surfaces.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
June 2019
An impurity effect on ice crystal growth in supercooled water is an important subject in relation to ice crystal formation in various conditions in the Earth's cryosphere regions. In this review, we consider antifreeze glycoprotein molecules as an impurity. These molecules are well known as functional molecules for controlling ice crystal growth by their adsorption on growing ice/water interfaces.
View Article and Find Full Text PDFThe ice premelt, often called the quasi-liquid layer (QLL), is key for the lubrication of ice, gas uptake by ice, and growth of aerosols. Despite its apparent importance, in-depth understanding of the ice premelt from the microscopic to the macroscopic scale has not been gained. By reviewing data obtained using molecular dynamics (MD) simulations, sum-frequency generation (SFG) spectroscopy, and laser confocal differential interference contrast microscopy (LCM-DIM), we provide a unified view of the experimentally observed variation in quasi-liquid (QL) states.
View Article and Find Full Text PDFA microscopic understanding of crystal-melt interfaces, inseparably involved in the dynamics of crystallization, is a long-standing challenge in condensed matter physics. Here, using an advanced optical microscopy, we directly visualize growing interfaces between ice basal faces and quasiliquid layers (QLLs) during ice crystal growth. This system serves as a model for studying the molecular incorporation process of the crystal growth from a supercooled melt (the so-called melt growth), often hidden by inevitable latent heat diffusion and/or the extremely high crystal growth rate.
View Article and Find Full Text PDFTo protect themselves, insects cover their bodies with what is called cuticular lipid. The cuticular lipid of an American cockroach has a unique lipid content; the most abundant is a cis-alkadiene, cis, cis-6,9-heptacosadiene, amounting to about 70%, which is followed by a branched alkane 3-methylpentacosane. In order to clarify the structural features of the unique lipid composition below the critical temperature, the cuticular lipid was studied by Fourier transform infrared (FTIR) spectroscopy in combination with an attenuated total reflection (ATR) sampling technique.
View Article and Find Full Text PDFIce-binding proteins (IBPs) affect ice crystal growth by attaching to crystal faces. We present the effects on the growth of an ice single crystal caused by an ice-binding protein from the sea ice microalga (IBP) that is characterized by the widespread domain of unknown function 3494 (DUF3494) and known to cause a moderate freezing point depression (below 1 °C). By the application of interferometry, bright-field microscopy, and fluorescence microscopy, we observed that the IBP attaches to the basal faces of ice crystals, thereby inhibiting their growth in the direction and resulting in an increase in the effective supercooling with increasing IBP concentration.
View Article and Find Full Text PDFThe free growth of ice crystals in supercooled bulk water containing an impurity of glycoprotein, a bio-macromolecule that functions as 'antifreeze' in living organisms in a subzero environment, was observed under microgravity conditions on the International Space Station. We observed the acceleration and oscillation of the normal growth rates as a result of the interfacial adsorption of these protein molecules, which is a newly discovered impurity effect for crystal growth. As the convection caused by gravity may mitigate or modify this effect, secure observations of this effect were first made possible by continuous measurements of normal growth rates under long-term microgravity condition realized only in the spacecraft.
View Article and Find Full Text PDFSince the pioneering prediction of surface melting by Michael Faraday, it has been widely accepted that thin water layers, called quasi-liquid layers (QLLs), homogeneously and completely wet ice surfaces. Contrary to this conventional wisdom, here we both theoretically and experimentally demonstrate that QLLs have more than two wetting states and that there is a first-order wetting transition between them. Furthermore, we find that QLLs are born not only under supersaturated conditions, as recently reported, but also at undersaturation, but QLLs are absent at equilibrium.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2016
Surfaces of ice are covered with thin liquid water layers, called quasi-liquid layers (QLLs), even below their melting point (0 °C), which govern a wide variety of phenomena in nature. We recently found that two types of QLL phases appear that exhibit different morphologies (droplets and thin layers) [Sazaki G. et al.
View Article and Find Full Text PDFWe have experimentally determined the surface tension-to-shear viscosity ratio (the so-called characteristic velocity) of quasiliquid layers (QLLs) on ice crystal surfaces from their wetting dynamics. Using an advanced optical microscope, whose resolution reaches the molecular level in the height direction, we directly observed the coalescent process of QLLs and followed the relaxation modes of their contact lines. The relaxation dynamics is known to be governed by the characteristic velocity, which allows us to access the physical properties of QLLs in a noninvasive way.
View Article and Find Full Text PDFWe demonstrate the oscillatory phenomenon for the twisting growth of a triclinic crystal through in situ observation of the concentration field around the growing tip of a needle by high-resolution phase-shift interferometry.
View Article and Find Full Text PDFSome biological substances control the nucleation and growth of inorganic crystals. Antifreeze proteins, which prohibit ice crystal growth in living organisms, promise are also important as biological antifreezes for medical applications and in the frozen food industries. In this work, we investigated the crystallization of ice in the presence of a new cryoprotector, carboxylated ε-poly-L-lysine (COOH-PLL).
View Article and Find Full Text PDFHydrogels with tunable elasticity has been widely used as micromechanical environment models for cells. However, the imaging of physical contacts between cells and hydrogels with a nanometer resolution along the optical axis remain challenging because of low reflectivity at hydrogel-liquid interface. In this work, we have developed an advanced interferometric optical microscopy for the high contrast visualization of cell-hydrogel contact.
View Article and Find Full Text PDFTo start systematically investigating the quality improvement of protein crystals, the elementary growth processes of protein crystals must be first clarified comprehensively. Atomic force microscopy (AFM) has made a tremendous contribution toward elucidating the elementary growth processes of protein crystals and has confirmed that protein crystals grow layer by layer utilizing kinks on steps, as in the case of inorganic and low-molecular-weight compound crystals. However, the scanning of the AFM cantilever greatly disturbs the concentration distribution and solution flow in the vicinity of growing protein crystals.
View Article and Find Full Text PDFHigh-throughput protein X-ray crystallography offers a significant opportunity to facilitate drug discovery. The most reliable approach is to determine the three-dimensional structure of the protein-ligand complex by soaking the ligand in apo crystals. However, protein apo crystals produced by conventional crystallization in a solution are fatally damaged by osmotic shock during soaking.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2012
Ice plays crucially important roles in various phenomena because of its abundance on Earth. However, revealing the dynamic behavior of quasi-liquid layers (QLLs), which governs the surface properties of ice crystals at temperatures near the melting point, remains an experimental challenge. Here we show that two types of QLL phases appear that exhibit different morphologies and dynamics.
View Article and Find Full Text PDFHierarchic structure and anomalous diffusion on submicrometer scale were introduced into an artificial cell membrane, and the spatiotemporal dependence of lipid diffusion was visualized on nanostructured oxide surfaces. We observed the lipid diffusion in supported lipid bilayers (SLBs) on step-and-terrace TiO(2)(100) and amorphous SiO(2)/Si surfaces by single molecule tracking (SMT) method. The SMT at the time resolution of 500 μs to 30 ms achieved observation of the lipid diffusion over the spatial and temporal ranges of 100 nm/millisecond to 1 μm/second.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2010
Due to the abundance of ice on earth, the phase transition of ice plays crucially important roles in various phenomena in nature. Hence, the molecular-level understanding of ice crystal surfaces holds the key to unlocking the secrets of a number of fields. In this study we demonstrate, by laser confocal microscopy combined with differential interference contrast microscopy, that elementary steps (the growing ends of ubiquitous molecular layers with the minimum height) of ice crystals and their dynamic behavior can be visualized directly at air-ice interfaces.
View Article and Find Full Text PDFFrom the latter half of the '90s, many studies of the effects of magnetic fields on protein crystallization have been carried out. It has been found that the crystallization of proteins under both homogeneous and inhomogeneous (gradient) magnetic fields enhances the quality of protein crystals. The quality enhancement is attributed to the magnetic orientation of protein crystals and the magnetic suppression of buoyancy convection in protein solutions.
View Article and Find Full Text PDFThe growth and dissolution rates of glucose isomerase crystals ({1 0 1} face) were measured in situ at 0.1 and 100 MPa. From these data, we determined that the solubilities at 25 degrees C were C(e) = 3.
View Article and Find Full Text PDF