Publications by authors named "Gen Larsson"

Article Synopsis
  • - The study addresses acetate accumulation as a limiting factor in producing (R)-3-hydroxybutyrate (3HB) using E. coli in high-cell-density processes.
  • - Researchers evaluated two strategies: deleting specific genes to reduce acetate formation and screening various E. coli strains to find low acetate-producing platforms.
  • - The BL21 strain was identified as the best performer, yielding significantly higher 3HB production and lower acetate formation compared to other strains, achieving record 3HB concentration and productivity.
View Article and Find Full Text PDF

Biotechnologically produced (R)-3-hydroxybutyrate is an interesting pre-cursor for antibiotics, vitamins, and other molecules benefitting from enantioselective production. An often-employed pathway for (R)-3-hydroxybutyrate production in recombinant E. coli consists of three-steps: (1) condensation of two acetyl-CoA molecules to acetoacetyl-CoA, (2) reduction of acetoacetyl-CoA to (R)-3-hydroxybutyrate-CoA, and (3) hydrolysis of (R)-3-hydroxybutyrate-CoA to (R)-3-hydroxybutyrate by thioesterase.

View Article and Find Full Text PDF

Display of recombinant enzymes on the cell surface of Gram-negative bacteria is a desirable feature with applications in whole-cell biocatalysis, affinity screening and degradation of environmental pollutants. One common technique for recombinant protein display on the Escherichia coli surface is autotransport. Successful autotransport of an enzyme largely depends on the following: (1) the size, sequence and structure of the displayed protein, (2) the cultivation conditions, and (3) the choice of the autotransporter expression system.

View Article and Find Full Text PDF

Environmental release and accumulation of pharmaceuticals and personal care products is a global concern in view of increased awareness of ecotoxicological effects. Adsorbent properties make the biopolymer melanin an interesting alternative to remove micropollutants from water. Recently, tyrosinase-surface-displaying Escherichia coli was shown to be an interesting self-replicating production system for melanin-covered cells for batch-wise absorption of the model pharmaceutical chloroquine.

View Article and Find Full Text PDF

Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation.

View Article and Find Full Text PDF

The removal of pharmaceutically active compounds by powdered activated carbon (PAC) in municipal wastewater is a promising solution to the problem of polluted recipient waters. Today, an efficient design strategy is however lacking with regard to high-level overall, and specific, substance removal in the large scale. The performance of PAC-based removal of pharmaceuticals was studied in pilot-scale with respect to the critical parameters; contact time and PAC dose using one PAC product selected by screening in bench-scale.

View Article and Find Full Text PDF

Today, it is considered state-of-the-art to engineer living organisms for various biotechnology applications. Even though this has led to numerous scientific breakthroughs, the enclosed interior of bacterial cells still restricts interactions with enzymes, pathways and products due to the mass-transfer barrier formed by the cell envelope. To promote accessibility, we propose engineering of biocatalytic reactions and subsequent product deposition directly on the bacterial surface.

View Article and Find Full Text PDF

Background: In a recently discovered microorganism, Halomonas boliviensis, polyhydroxybutyrate production was extensive and in contrast to other PHB producers, contained a set of alleles for the enzymes of this pathway. Also the monomer, (R)-3-hydroxybutyrate (3HB), possesses features that are interesting for commercial production, in particular the synthesis of fine chemicals with chiral specificity. Production with a halophilic organism is however not without serious drawbacks, wherefore it was desirable to introduce the 3HB pathway into Escherichia coli.

View Article and Find Full Text PDF

The chiral compound (R)-3-hydroxybutyrate (3HB) is naturally produced by many wild type organisms as the monomer for polyhydroxybutyrate (PHB). Both compounds are commercially valuable and co-polymeric polyhydroxyalkanoates have been used e.g.

View Article and Find Full Text PDF

Background: Lignocellulosic waste is a desirable biomass for use in second generation biorefineries. Up to 40% of its sugar content consist of pentoses, which organisms either take up sequentially after glucose depletion, or not at all. A previously described Escherichia coli strain, PPA652ara, capable of simultaneous consumption of glucose, xylose and arabinose was in the present work utilized for production of (R)-3-hydroxybutyric acid (3HB) from a mixture of glucose, xylose and arabinose.

View Article and Find Full Text PDF
Article Synopsis
  • Salmonella enterica serovar Enteritidis (SE) is a major cause of food-borne disease, and previous attempts to use E. coli as a vaccine vehicle for its flagellar protein (H:gm) faced challenges due to the protein being cleaved.
  • Researchers created a truncated version of H:gm (H:gmd) that could be expressed successfully, along with a fusion protein with the fimbrial protein SefA to improve its display and immune response.
  • The study found that both H:gmd and the fusion protein were effectively displayed on E. coli's surface and could trigger a pro-inflammatory response in intestinal cells, marking progress towards a potential vaccine against Salmonella infections.
View Article and Find Full Text PDF

The autotransporter family of Gram-negative protein exporters has been exploited for surface expression of recombinant passenger proteins. While the passenger in some cases was successfully translocated, a major problem has been low levels of full-length protein on the surface due to proteolysis following export over the cytoplasmic membrane. The aim of the present study was to increase the surface expression yield of the model protein SefA, a Salmonella enterica fimbrial subunit with potential for use in vaccine applications, by reducing this proteolysis through process design using Design of Experiments methodology.

View Article and Find Full Text PDF

Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts.

View Article and Find Full Text PDF

Lignocellulosic waste is a naturally abundant biomass and is therefore an attractive material to use in second generation biorefineries. Microbial growth on the monosaccharides present in hydrolyzed lignocellulose is however associated with several obstacles whereof one is the lack of simultaneous uptake of the sugars. We have studied the aerobic growth of Escherichia coli on D-glucose, D-xylose, and L-arabinose and for simultaneous uptake to occur, both the carbon catabolite repression mechanism (CCR) and the AraC repression of xylose uptake and metabolism had to be removed.

View Article and Find Full Text PDF

Background: The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag.

View Article and Find Full Text PDF

Background: Bacterial surface display is of interest in many applications, including live vaccine development, screening of protein libraries and the development of whole cell biocatalysts. The goal of this work was to understand which parameters result in production of large quantities of cells that at the same time express desired levels of the chosen protein on the cell surface. For this purpose, staphylococcal protein Z was expressed using the AIDA autotransporter in Escherichia coli.

View Article and Find Full Text PDF

Background: The production of integral membrane spanning proteins (IMP's) constitutes a bottleneck in pharmaceutical development. It was long considered that the state-of-the-art was to produce the proteins as inclusion bodies using a powerful induction system. However, the quality of the protein was compromised and the production of a soluble protein that is incorporated into the membrane from which it is extracted is now considered to be a better method.

View Article and Find Full Text PDF

Background: Salmonella enterica serotype Enteritidis (SE) is considered to be one of the most potent pathogenic Salmonella serotypes causing food-borne disease in humans. Since a live bacterial vaccine based on surface display of antigens has many advantages over traditional vaccines, we have studied the surface display of the SE antigenic proteins, H:gm and SefA in Escherichia coli by the β-autotransporter system, AIDA. This procedure was compared to protein translocation in Staphylococcus carnosus, using a staphylococci hybrid vector earlier developed for surface display of other vaccine epitopes.

View Article and Find Full Text PDF

The feed profile of glucose during fedbatch cultivation could be used to influence the retention of the periplasmic product ZZ-cutinase. An increased feed rate led to a higher production rate but also to an increased specific leakage, which reduced the periplasmic retention. Three growth rates: 0.

View Article and Find Full Text PDF

A set of mutations in the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was used to create Escherichia coli strains with a reduced uptake rate of glucose. This allows a growth restriction, which is controlled on cellular rather than reactor level, which is typical of the fed-batch cultivation concept. Batch growth of the engineered strains resulted in cell accumulation profiles corresponding to a growth rate of 0.

View Article and Find Full Text PDF

At increasing glucose limitation, typical for fed-batch cultivation performance, cultivation of Escherichia coli (relA1) results in development of a lipid structure that radically differs from the wild type and is characterised by accumulation of neutral phospholipids and saturated fatty acids. The mutant can, furthermore, not change the level of cardiolipin, which is generally the hallmark of changes to severe glucose limitation. The result suggests an increased negative control in the mutant with respect to the flux to phosphatidyl glycerol and cardolipin as well as to unsaturated fatty acids.

View Article and Find Full Text PDF

From the hypothesis that the rate of expression of a nascent polypeptide controls the accumulation of soluble full-length protein, accumulation of the model fusion proteins Zb-MalE and Zb-MalE31, were studied. MalE and MalE31 are two isoforms of the maltose binding protein, differing only in two consecutive amino acids. Parameters controlling the expression rate were the transcription rate, which was controlled by IPTG induction of the lacUV5 promoter and the substrate addition levels during fed-batch cultivation.

View Article and Find Full Text PDF

The effect of changes in substrate feed rate during fedbatch cultivation was investigated with respect to soluble protein formation and transport of product to the periplasm in Escherichia coli. Production was transcribed from the P(malK) promoter; and the cytoplasmic part of the production was compared with production from the P(lacUV5) promoter. The fusion protein product, Zb-MalE, was at all times accumulated in the soluble protein fraction except during high-feed-rate production in the cytoplasm.

View Article and Find Full Text PDF

P(malK) is induced through activation of MalT, by the formation of maltotriose and cyclic adenosine monophosphate (cAMP). The possibility to influence endogenous inducer levels is used to vary the production rates in specifically designed production protocols. Induction based on a batch process protocol on maltose gives low production rates, as the result of a lack of cAMP, which is shown to be of major importance to fully induce this promoter.

View Article and Find Full Text PDF