Publications by authors named "Gen Honda"

The cellular slime mold Dictyostelium discoideum, a member of the Amoebozoa, has been extensively studied in cell and developmental biology. D. discoideum is unique in that they are genetically tractable, with a wealth of data accumulated over half a century of research.

View Article and Find Full Text PDF

Over the last decade, the use of microfabricated substrates has proven pivotal for studying the effect of substrate topography on cell deformation and migration. Microfabrication techniques allow one to construct a transparent substrate with topographic features with high designability and reproducibility and thus well suited to experiments that microscopically address how spatial and directional bias are brought about in the cytoskeletal machineries and hence cell motility. While much of the progress in this avenue of study has so far been made in adhesive cells of epithelial and mesenchymal nature, whether related phenomena exist in less adhesive fast migrating cells is relatively unknown.

View Article and Find Full Text PDF

Cells are small, closed spaces filled with various types of macromolecules. Although it is shown that the characteristics of biochemical reactions in vitro are quite different from those in living cells, the role of the co-existence of various macromolecules in cell-size space remains still elusive. Here, using a constructive approach, it is demonstrated that the co-existence of various macromolecules themselves has the ability to tune protein localization for spatiotemporal regulation and a biochemical reaction system in a cell-size space.

View Article and Find Full Text PDF

In this study, a one-step method is discussed for producing uniform cell-sized microgels using glass capillaries filled with a binary polymer blend of polyethylene glycol (PEG) and gelatin. Upon decreasing temperature, phase separation of the PEG/gelatin blends and gelation of gelatin occur, and then the polymer blend forms linearly aligned, uniformly sized gelatin microgels in the glass capillary. When DNA is added to the polymer solution, gelatin microgels entrapping DNA are spontaneously formed, and the DNA prevents the coalescence of the microdroplets even at temperatures above the melting point.

View Article and Find Full Text PDF

Tardigrades are able to tolerate almost complete dehydration by entering a reversible ametabolic state called anhydrobiosis and resume their animation upon rehydration. Dehydrated tardigrades are exceptionally stable and withstand various physical extremes. Although trehalose and late embryogenesis abundant (LEA) proteins have been extensively studied as potent protectants against dehydration in other anhydrobiotic organisms, tardigrades produce high amounts of tardigrade-unique protective proteins.

View Article and Find Full Text PDF

In fast-moving cells such as amoeba and immune cells, dendritic actin filaments are spatiotemporally regulated to shape large-scale plasma membrane protrusions. Despite their importance in migration, as well as in particle and liquid ingestion, how their dynamics are affected by micrometer-scale features of the contact surface is still poorly understood. Here, through quantitative image analysis of on microfabricated surfaces, we show that there is a distinct mode of topographical guidance directed by the macropinocytic membrane cup.

View Article and Find Full Text PDF

Navigation of fast migrating cells such as amoeba Dictyostelium and immune cells are tightly associated with their morphologies that range from steady polarized forms that support high directionality to those more complex and variable when making frequent turns. Model simulations are essential for quantitative understanding of these features and their origins, however systematic comparisons with real data are underdeveloped. Here, by employing deep-learning-based feature extraction combined with phase-field modeling framework, we show that a low dimensional feature space for 2D migrating cell morphologies obtained from the shape stereotype of keratocytes, Dictyostelium and neutrophils can be fully mapped by an interlinked signaling network of cell-polarization and protrusion dynamics.

View Article and Find Full Text PDF