Regenerative medicine is moving from the nascent to the transitional stage as researchers are actively engaged in creating mini-organs from pluripotent stem cells to construct artificial models of physiological and pathological conditions. Currently, mini-organs can express higher-order functions, but their size is limited to the order of a few millimeters. Therefore, one of the ultimate goals of regenerative medicine, "organ replication and transplantation with organoid," remains a major obstacle.
View Article and Find Full Text PDFACS Appl Bio Mater
August 2020
High-strength macroporous monoliths can be obtained by the simple mixing of boehmite nanofiber aqueous acetate dispersions with methyltrimethoxysilane. On the boehmite nanofiber-polymethylsilsesquioxane monoliths, we can fabricate structures smaller than a millimeter in size by computer numerical control (CNC) milling, resulting in a machined surface that is superhydrophobic and biocompatible. Using this strategy, we fabricated a superhydrophobic multiwell plate that holds water droplets to produce 3D cell culture environments for various cell types.
View Article and Find Full Text PDFOver the last three decades, the protocols and procedures of the DNA amplification technique, polymerase chain reaction (PCR), have been optimized and well developed. However, there have been no significant innovations in processes for sample dispersion for PCR that have reduced the amount of single-use or unrecyclable plastic waste produced. To address the issue of plastic waste, this paper reports the synthesis and successful use of a core-shell bead microreactor using photopolymerization of a composite liquid marble as a dispersion process.
View Article and Find Full Text PDFHypothesis: In our previous study, we prepared millimeter-sized spherical hard capsules by solidifying droplets of liquid monomer or polymer solution placed on superamphiphobic surface. Application of liquid marbles in place of the naked droplets for capsule preparation has a great potential to increase encapsulation efficiency of high volatile ingredients. Further, interfacial thermodynamic prediction of internal configuration of capsules from spreading coefficients may be effective to prepare core/shell capsule.
View Article and Find Full Text PDFGiant vesicles were efficiently produced by squeezing a lipid (l-α-phosphatidylcholine from egg yolk)-coated marshmallow-like flexible macroporous silicone monolith in a buffer. The mean diameter of the obtained vesicles was 2 μm, showing a wide distribution, up to tens of micrometers, which was similar to that of vesicles formed by a natural swelling method. It was possible to prepare vesicle dispersions on a scale from several microliters to several hundred milliliters.
View Article and Find Full Text PDFPolymethylsilsesquioxane-cellulose nanofiber (PMSQ-CNF) composite aerogels have been prepared through sol-gel in a solvent containing a small amount of CNFs as suspension. Since these composite aerogels do not show excessive aggregation of PMSQ and CNF, the original PMSQ networks are not disturbed. Composite aerogels with low density (0.
View Article and Find Full Text PDFA transition from hierarchical pore structures (macro- and meso-pores) to uniform mesopores in monolithic polymethylsilsesquioxane (PMSQ, CH(3)SiO(1.5)) gels has been investigated using a sol-gel system containing surfactant Pluronic F127. The precursor methyltrimethoxysilane (MTMS) undergoes an acid/base two-step reaction, in which hydrolysis and polycondensation proceed in acidic and basic aqueous media, respectively, as a one-pot reaction.
View Article and Find Full Text PDF