Publications by authors named "Gemmill-Herren B"

Article Synopsis
  • There has been a significant increase in pesticide use worldwide to meet the growing food demand, with variation in usage rates across different regions from 1995 to 2020.
  • A 2016 IPBES assessment identified pesticides as a major factor in the decline of pollinators, noting that most studies focused on specific species in developed countries.
  • The analysis includes forecasts showing increasing pesticide use in Africa, South America, and various Asian regions, while addressing the lack of research on the impact of pesticides on pollinators and suggesting conservation efforts.
View Article and Find Full Text PDF

Invasive species can reach high abundances and dominate native environments. One of the most impressive examples of ecological invasions is the spread of the African subspecies of the honey bee throughout the Americas, starting from its introduction in a single locality in Brazil. The invasive honey bee is expected to more negatively impact bee community abundance and diversity than native dominant species, but this has not been tested previously.

View Article and Find Full Text PDF

Pollinator decline has attracted global attention and substantial efforts are underway to respond through national pollinator strategies and action plans. These policy responses require clarity on what is driving pollinator decline and what risks it generates for society in different parts of the world. Using a formal expert elicitation process, we evaluated the relative regional and global importance of eight drivers of pollinator decline and ten consequent risks to human well-being.

View Article and Find Full Text PDF

Pollination management recommendations are becoming increasingly precise, context-specific and knowledge-intensive. Pollination is a service delivered across landscapes, entailing policy constructs across agricultural landscapes. Diversified farming practices effectively promote pollination services.

View Article and Find Full Text PDF

Ecological intensification aims to increase crop productivity by enhancing biodiversity and associated ecosystem services, while minimizing the use of synthetic inputs and cropland expansion. Policies to promote ecological intensification have emerged in different countries, but they are still scarce and vary widely across regions. Here, we propose ten policy targets that governments can follow for ecological intensification.

View Article and Find Full Text PDF

Scientists and policy-makers globally are calling for alternative approaches to conventional intensification of agriculture that enhance ecosystem services provided by biodiversity. The evidence reviewed here suggests that alternative approaches can achieve high crop yields and profits, but the performance of other socioeconomic indicators (as well as long-term trends) is surprisingly poorly documented. Consequently, the implementation of conventional intensification and the discussion of alternative approaches are not based on quantitative evidence of their simultaneous ecological and socioeconomic impacts across the globe.

View Article and Find Full Text PDF

Ecological intensification, or the improvement of crop yield through enhancement of biodiversity, may be a sustainable pathway toward greater food supplies. Such sustainable increases may be especially important for the 2 billion people reliant on small farms, many of which are undernourished, yet we know little about the efficacy of this approach. Using a coordinated protocol across regions and crops, we quantify to what degree enhancing pollinator density and richness can improve yields on 344 fields from 33 pollinator-dependent crop systems in small and large farms from Africa, Asia, and Latin America.

View Article and Find Full Text PDF

Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others.

View Article and Find Full Text PDF

Recently there has been considerable concern about declines in bee communities in agricultural and natural habitats. The value of pollination to agriculture, provided primarily by bees, is >$200 billion/year worldwide, and in natural ecosystems it is thought to be even greater. However, no monitoring program exists to accurately detect declines in abundance of insect pollinators; thus, it is difficult to quantify the status of bee communities or estimate the extent of declines.

View Article and Find Full Text PDF

Pollination by bees and other animals increases the size, quality, or stability of harvests for 70% of leading global crops. Because native species pollinate many of these crops effectively, conserving habitats for wild pollinators within agricultural landscapes can help maintain pollination services. Using hierarchical Bayesian techniques, we synthesize the results of 23 studies - representing 16 crops on five continents - to estimate the general relationship between pollination services and distance from natural or semi-natural habitats.

View Article and Find Full Text PDF

Many ecosystem services are delivered by organisms that depend on habitats that are segregated spatially or temporally from the location where services are provided. Management of mobile organisms contributing to ecosystem services requires consideration not only of the local scale where services are delivered, but also the distribution of resources at the landscape scale, and the foraging ranges and dispersal movements of the mobile agents. We develop a conceptual model for exploring how one such mobile-agent-based ecosystem service (MABES), pollination, is affected by land-use change, and then generalize the model to other MABES.

View Article and Find Full Text PDF