Publications by authors named "Gemmi M"

The polymorphism of oxyresveratrol, a natural extract widely used in traditional Asian medicine, was investigated by means of the most recent structure characterization techniques. A previously unknown anhydrate oxyresveratrol crystal structure was identified for the first time from a submicrometric polyphasic mixture using 3D electron diffraction (3D ED). Additionally, a new polymorph of the dihydrate form of oxyresveratrol was also discovered and structurally studied.

View Article and Find Full Text PDF

The study investigates the impact of the d-lactic acid units content on the crystallinity and crystal structure of commercial poly(lactic acid) (PLA) grades, which are copolymers of poly(l-lactic acid) (PLLA) containing a minor amount of d-units. As the d-units content increases, a detectable decrease in crystallinity was observed along with a simultaneous rise in mobile amorphous fraction (MAF) and a reduction in rigid amorphous fraction (RAF). The percentage of d-units was found not to significantly affect RAF thickness, suggesting that the d-units are not completely excluded from the crystals.

View Article and Find Full Text PDF
Article Synopsis
  • The antipsychotic drug olanzapine exhibits complex polymorphism, with one of its forms, form III, remaining structurally unknown for over 20 years due to its consistent presence alongside other forms and difficulty in isolation.
  • The advance of 3D electron diffraction (3D ED) technology has made it possible to determine and refine the structure of olanzapine form III, highlighting the technique's effectiveness in analyzing complicated mixtures of small crystals.
  • The newly determined structure of form III is monoclinic and shows a unique packing arrangement compared to form II, differing significantly from predictions made by energy-minimization algorithms.
View Article and Find Full Text PDF
3D ED/MicroED entering a new era.

Acta Crystallogr C Struct Chem

June 2024

Aragon et al. [Acta Cryst. (2024), C80, 179-189], by reporting the discussion and the final conclusions of a round table held during a symposium at the National Center for CryoEM Access and Training, well describe all the advances that have been made for the application of 3D ED/MicroED to pharmaceutical and macromolecular nanocrystals and propose possible future scenarios.

View Article and Find Full Text PDF

Mechanochemical synthesis is a powerful approach to obtain new materials, limiting costs, and times. However, defected and submicrometrical-sized crystal products make critical their characterization through classical single-crystal X-ray diffraction. A valid alternative is represented by three-dimensional (3D) electron diffraction, in which a transmission electron microscope is used, like a diffractometer.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are exploring how piezoelectric nanomaterials and ultrasound can help repair tissues, and they found it might work well for creating cartilage.
  • In their study, they used special tiny particles mixed in a gel and applied exact ultrasound settings, which helped certain cells turn into cartilage cells even better.
  • They also created a model to predict how electricity from the ultrasound affects the materials at a tiny level, and the gel they used was safe and stuck well to cartilage, showing promise for future tests.
View Article and Find Full Text PDF
Article Synopsis
  • Tetrakis-4-(4-pyridyl)phenylmethane (TPPM) is a rigid tetrahedral molecule that forms a dynamic supramolecular organic framework (SOF) capable of switching between empty and filled states when stimulated.
  • The article discusses a new, expanded version of this TPPM-based SOF that was created using mechanochemical synthesis.
  • The crystal structure of this new SOF was analyzed through 3D electron diffraction with an innovative electron diffractometer.
View Article and Find Full Text PDF

The current work focuses on the investigation of two functionalized naphthyridine derivatives, namely ODIN-EtPh and ODIN-But, to gain insights into the hydrogen bond-assisted H-aggregate formation and its impact on the optical properties of ODIN molecules. By employing a combination of X-ray and electron crystallography, absorption and emission spectroscopy, time resolved fluorescence and ultrafast pump-probe spectroscopy (visible and infrared) we unravel the correlation between the structure and light-matter response, with a particular emphasis on the influence of the polarity of the surrounding environment. Our experimental results and simulations confirm that in polar and good hydrogen-bond acceptor solvents (DMSO), the formation of dimers for ODIN derivatives is strongly inhibited.

View Article and Find Full Text PDF

Copper (Cu) is the electrical conductor of choice in many categories of electrical wiring, with household and building installation being the major market of this metal. This work demonstrates the coating of Cu wires-with diameters relevant for low-voltage (LV) applications-with graphene. The chemical vapor deposition (CVD) coating process is rapid, safe, scalable, and industrially compatible.

View Article and Find Full Text PDF

Organic-inorganic Pb-free layered perovskites are efficient broadband emitters and thus are promising materials for lighting applications. However, their synthetic protocols require a controlled atmosphere, high temperature, and long preparation time. This hinders the potential tunability of their emission through organic cations, as is instead common practice in Pb-based structures.

View Article and Find Full Text PDF

A new one-dimensional hybrid iodoplumbate, namely, 4,4'-(anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) lead iodide CHNPbI (AEPyPbI), is reported here for the first time with its complete characterization. The material exhibits remarkable thermal stability (up to 300 °C), and it is unreactive under ambient conditions toward water and atmospheric oxygen, due to the quaternary nature of the nitrogen atoms present in the organic cation. The cation exhibits strong visible fluorescence under ultraviolet (UV) irradiation, and when its iodide is combined with PbI, it forms AEPyPbI, an efficient light-emitting material, with a photoluminescence emission intensity comparable to that of high-quality InP epilayers.

View Article and Find Full Text PDF

The true molecular conformation and the crystal structure of benzo[e]dinaphtho[2,3-a;1',2',3',4'-ghi]fluoranthene, 7,14-diphenylnaphtho[1,2,3,4-cde]bisanthene and 7,16-diphenylnaphtho[1,2,3,4-cde]helianthrene were determined ab initio by 3D electron diffraction. All three molecules are remarkable polycyclic aromatic hydrocarbons. The molecular conformation of two of these compounds could not be determined via classical spectroscopic methods due to the large size of the molecule and the occurrence of multiple and reciprocally connected aromatic rings.

View Article and Find Full Text PDF

The COVID-19 pandemic has further confirmed to the community that direct contact with contaminated surfaces and objects represents an important source of pathogen spreading among humans. Therefore, it is of paramount importance to design effective germicidal paints to ensure a rapid and potent disinfectant action of surfaces. In this work, we design novel germicide polymeric coatings by inserting quaternary ammonium and sugar groups on the macromolecular backbone, thus respectively endowing the polymer with germicide features and hydrophilicity to interact with the surfaces.

View Article and Find Full Text PDF

The dynamic behavior of supramolecular organic frameworks (SOFs) based on the rigid tetra-4-(4-pyridyl)phenylmethane (TPPM) organic tecton has been elucidated through 3D electron diffraction, X-ray powder diffraction and differential scanning calorimetry (DSC) analysis. The SOF undergoes a reversible single-crystal-to-single-crystal transformation when exposed to vapours of selected organic solvents, moving from a closed structure with isolated small voids to an expanded structure with solvated channels along the b axis. The observed selectivity is dictated by the fitting of the guest in the expanded SOF, following the degree of packing coefficient.

View Article and Find Full Text PDF

Organic functionalization of graphene is successfully performed 1,3-dipolar cycloaddition of azomethine ylide in the liquid phase. The comparison between 1-methyl-2-pyrrolidinone and ,-dimethylformamide as dispersant solvents, and between sonication and homogenization as dispersion techniques, proves ,-dimethylformamide and homogenization as the most effective choice. The functionalization of graphene nanosheets and reduced graphene oxide is confirmed using different techniques.

View Article and Find Full Text PDF

Despite the significant progress in bioprinting for skeletal muscle tissue engineering, new stimuli-responsive bioinks to boost the myogenesis process are highly desirable. In this work, we developed a printable alginate/Pluronic-based bioink including piezoelectric barium titanate nanoparticles (nominal diameter: ∼60 nm) for the 3D bioprinting of muscle cell-laden hydrogels. The aim was to investigate the effects of the combination of piezoelectric nanoparticles with ultrasound stimulation on early myogenic differentiation of the printed structures.

View Article and Find Full Text PDF

Colloidal chemistry grants access to a wealth of materials through simple and mild reactions. However, even few elements can combine in a variety of stoichiometries and structures, potentially resulting in impurities or even wrong products. Similar issues have been long addressed in organic chemistry by using reaction-directing groups, that are added to a substrate to promote a specific product and are later removed.

View Article and Find Full Text PDF

Nanomedicine is among the most fascinating areas of research. Most of the newly discovered pharmaceutical polymorphs, as well as many new synthesized or isolated natural products, appear only in form of nanocrystals. The development of techniques that allow investigating the atomic structure of nanocrystalline materials is therefore one of the most important frontiers of crystallography.

View Article and Find Full Text PDF

The combined approach of ex situ normothermic machine perfusion (NMP) and nanotechnology represents a strategy to mitigate ischemia/reperfusion injury in liver transplantation (LT). We evaluated the uptake, distribution, and efficacy of antioxidant cerium oxide nanoparticles (nanoceria) during normothermic perfusion of discarded human livers. A total of 9 discarded human liver grafts were randomized in 2 groups and underwent 4 h of NMP: 5 grafts were treated with nanoceria conjugated with albumin (Alb-NC; 50 µg/ml) and compared with 4 untreated grafts.

View Article and Find Full Text PDF

The toughening mechanisms of poly(lactic acid; PLA) blended with two different elastomers, namely poly (butylene adipate-co-terephtalate; PBAT) and polyolefin elastomers with grafted glycidyl methacrylate (POE-g-GMA), at 10 and 20 wt.%, were investigated. Tensile and Charpy impact tests showed a general improvement in the performance of the PLA.

View Article and Find Full Text PDF

The structure solution of the δ-polymorph of indomethacin was obtained using three-dimensional electron diffraction. This form shows a significantly enhanced dissolution rate compared with the more common and better studied α- and γ-polymorphs, indicating better biopharmaceutical properties for medicinal applications. The structure was solved in non-centrosymmetric space group P2 and comprises two molecules in the asymmetric unit.

View Article and Find Full Text PDF

Coesite in impact rocks is traditionally considered a retrograde product formed during pressure release by the crystallisation of an amorphous phase (either silica melt or diaplectic glass). Recently, the detailed microscopic and crystallographic study of impact ejecta from Kamil crater and the Australasian tektite strewn field pointed in turn to a different coesite formation pathway, through subsolidus quartz-to-coesite transformation. We report here further evidence documenting the formation of coesite directly from quartz.

View Article and Find Full Text PDF

Herein we demonstrate the prowess of the 3D electron diffraction approach by unveiling the structure of terrylene, the third member in the series of peri-condensed naphthalene analogues, which has eluded structure determination for 65 years. The structure was determined by direct methods using electron diffraction data and corroborated by dispersion-inclusive density functional theory optimizations. Terrylene crystalizes in the monoclinic space group P2 /a, arranging in a sandwich-herringbone packing motif, similar to analogous compounds.

View Article and Find Full Text PDF

A previously unknown cocrystal of olanzapine and phenol was identified from a volatile deep eutectic solvent as the intermediate species in the crystallization of olanzapine. This new nanocrystalline phase was investigated by electron diffraction, powder X-ray diffraction and differential scanning calorimetry. The structure was determined by simulated annealing using 3D electron diffraction data and confirmed using DFT-D optimizations.

View Article and Find Full Text PDF