Publications by authors named "Gemma Thomson"

Article Synopsis
  • Intercellular communication in solid tumors, particularly via cancer-associated fibroblasts (CAFs), plays a key role in tumor growth and spreading.
  • Research demonstrated that CAFs with a myofibroblast phenotype release extracellular vesicles that transfer proteins to endothelial cells (ECs), influencing their interactions with immune cells.
  • Mass spectrometry identified specific proteins, such as THY1, that enhance monocyte adhesion to ECs, suggesting that CAF-derived matrix-bound extracellular vesicles are crucial in shaping tumor interactions with surrounding cells.
View Article and Find Full Text PDF

Pelizaeus-Merzbacher disease is a fatal X-linked leukodystrophy caused by mutations in the PLP1 gene, which is expressed in the CNS by oligodendrocytes. Disease onset, symptoms and mortality span a broad spectrum depending on the nature of the mutation and thus the degree of CNS hypomyelination. In the absence of an effective treatment, direct cell transplantation into the CNS to restore myelin has been tested in animal models of severe forms of the disease with failure of developmental myelination, and more recently, in severely affected patients with early disease onset due to point mutations in the PLP1 gene, and absence of myelin by MRI.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3β) a key regulator of glycolysis.

View Article and Find Full Text PDF

The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Consequently, mechanistic insights, therapeutic approaches and safety tests rely ultimately on models and clinical trials. However, models that replicate the cellular complexity of the CNS can inform these approaches, reducing costs and minimising the use of human material or experimental animals; in line with the principles of the 3Rs.

View Article and Find Full Text PDF

The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of experimentally acquired morphological and electrical properties of small CNS axons and oligodendrocytes prompted us to incorporate these data into a computer model, with the aim of simulating the effects of focal axon swelling on action potential conduction.

View Article and Find Full Text PDF

In the central nervous system (CNS) the majority of axons are surrounded by a myelin sheath, which is produced by oligodendrocytes. Myelin is a lipid-rich insulating material that facilitates the rapid conduction of electrical impulses along the myelinated nerve fibre. Proteolipid protein and its isoform DM20 constitute the most abundant protein component of CNS myelin.

View Article and Find Full Text PDF