Activated ALK and ROS1 tyrosine kinases, resulting from chromosomal rearrangements, occur in a subset of non-small cell lung cancers (NSCLC) as well as other tumor types and their oncogenic relevance as actionable targets has been demonstrated by the efficacy of selective kinase inhibitors such as crizotinib, ceritinib, and alectinib. More recently, low-frequency rearrangements of TRK kinases have been described in NSCLC, colorectal carcinoma, glioblastoma, and Spitzoid melanoma. Entrectinib, whose discovery and preclinical characterization are reported herein, is a novel, potent inhibitor of ALK, ROS1, and, importantly, of TRK family kinases, which shows promise for therapy of tumors bearing oncogenic forms of these proteins.
View Article and Find Full Text PDFIntroduction: Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies.
Matherials & Methods: We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation.
Cytokine-induced killer (CIK) cells are in-vitro-expanded T lymphocytes that represent a heterogeneous population. A large majority of CIK cells are CD3(+)CD56(+), and this population has been shown to confer a cytotoxic effect against tumor targets. The scope of this work was to study whether CD56 has a direct role in CIK-mediated cytotoxicity.
View Article and Find Full Text PDFCD56 is expressed in 15-20% of acute myeloid leukaemias (AML) and is associated with extramedullary diffusion, multidrug resistance and poor prognosis. We describe the establishment and characterisation of a novel disseminated model of AML (AML-NS8), generated by injection into mice of leukaemic blasts freshly isolated from a patient with an aggressive CD56(+) monoblastic AML (M5a). The model reproduced typical manifestations of this leukaemia, including presence of extramedullary masses and central nervous system involvement, and the original phenotype, karyotype and genotype of leukaemic cells were retained in vivo.
View Article and Find Full Text PDFMethods Mol Biol
August 2013
Proper target selection and validation are crucial to the discovery of new anti-cancer agents. Since tumors depend on a suitable microenvironment for their growth, once a putative target has been identified, its validation should be performed whenever possible in vivo. This chapter deals with the generation of human xenograft mouse models genetically modified to induce the modulation of cancer-related genes as an approach to validate oncology targets.
View Article and Find Full Text PDFMethods Mol Biol
August 2013
In vitro approaches using human cancer cell lines aimed to identify and validate oncology targets, have pinpointed a number of key targets and signalling pathways which control cell growth and cell death. However, tumors are more than insular masses of proliferating cancer cells. Instead they are complex tissues composed of multiple distinct cell types that participate in homotypic and heterotypic interactions and depend upon each other for their growth.
View Article and Find Full Text PDFIn vivo imaging of apoptosis in a preclinical setting in anticancer drug development could provide remarkable advantages in terms of translational medicine. So far, several imaging technologies with different probes have been used to achieve this goal. Here we describe a bioluminescence imaging approach that uses a new formulation of Z-DEVD-aminoluciferin, a caspase 3/7 substrate, to monitor in vivo apoptosis in tumor cells engineered to express luciferase.
View Article and Find Full Text PDFK-ras is the most frequently mutated oncogene in non-small cell lung cancer (NSCLC), the most common form of lung cancer. Recent studies indicate that NSCLC patients with mutant K-ras do not respond to epidermal growth factor receptor inhibitors. In the attempt to find alternative therapeutic regimes for such patients, we tested PHA-848125, an oral pan cyclin-dependent kinase inhibitor currently under evaluation in phase II clinical trial, on a transgenic mouse model, K-Ras(G12D)LA2, which develops pulmonary cancerous lesions reminiscent of human lung adenocarcinomas.
View Article and Find Full Text PDFPHA-739358 is a small-molecule 3-aminopyrazole derivative with strong activity against Aurora kinases and cross-reactivities with some receptor tyrosine kinases relevant for cancer. PHA-739358 inhibits all Aurora kinase family members and shows a dominant Aurora B kinase inhibition-related cellular phenotype and mechanism of action in cells in vitro and in vivo. p53 status-dependent endoreduplication is observed upon treatment of cells with PHA-739358, and phosphorylation of histone H3 in Ser(10) is inhibited.
View Article and Find Full Text PDFBackground: The Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) develops progressive forms of prostate cancer. Due to the lack of a validated non-invasive methodology, pathology has been so far the most common parameter evaluated in efficacy studies.
Methods: We studied by magnetic resonance imaging (MRI) 210 mice that were repeatedly measured up to 33 weeks of age in order to stage prostate tumors and follow pathological progression in single animals.
Fibroblast growth factor 2 (FGF2) signaling is involved in angiogenesis, vascular contractility, and cardiac hypertrophy. Mice lacking a functional FGF2 gene (FGF2(-/-)) are hypotensive, but the primary physiological role of FGF2 in cardiovascular homeostasis remained unknown. Using a chicken FGF2 (cFGF2) transgene under control of the Wnt-1 promotor, we selectively re-expressed FGF2 in the developing nervous system of FGF2(-/-) (transgenic FGF2 mutant) embryos.
View Article and Find Full Text PDF