Publications by authors named "Gemma Sweeney"

The novel dimeric iodo-iridium(III) complex, [Ir(Cp*CONMe)I], (Cp*CONMe = η--2,3,4,5-hexamethylcyclopenta-2,4-diene carboxamide) bearing an amide moiety within the tetramethylcyclopentadiene ring, has been synthesised and characterised. The ligand Cp*CONMe is synthesised as two regioisomers, however the 2-substituted isomer exists as two distinguishable conformers due to restricted rotation about the amide carbonyl carbon and the ring carbon. The relative acidities of Cp*CONMe and Cp* are compared by their relative rates of H/D exchange.

View Article and Find Full Text PDF

The dimeric iodo-iridium complex [IrCp*I2]2 (Cp* = pentamethylcyclopentadiene) is an efficient catalyst for the racemisation of secondary and tertiary amines at ambient and higher temperatures with a low catalyst loading. The racemisation occurs with pseudo-first-order kinetics and the corresponding four rate constants were obtained by monitoring the time dependence of the concentrations of the (R) and (S) enantiomers starting with either pure (R) or (S) and show a first-order dependence on catalyst concentration. Low temperature (1)H NMR data is consistent with the formation of a 1 : 1 complex with the amine coordinated to the iridium and with both iodide anions still bound to the metal-ion, but at the higher temperatures used for kinetic studies binding is weak and so no saturation zero-order kinetics are observed.

View Article and Find Full Text PDF

The iridium complex of pentamethylcyclopentadiene and (S,S)-1,2-diphenyl-N'-tosylethane-1,2-diamine is an effective catalyst for the asymmetric transfer hydrogenation of imine substrates under acidic conditions. Using the Ir catalyst and a 5 : 2 ratio of formic acid : triethylamine as the hydride source for the asymmetric transfer hydrogenation of 1-methyl-3,4-dihydroisoquinoline and its 6,7-dimethoxy substituted derivative, in either acetonitrile or dichloromethane, shows unusual enantiomeric excess (ee) profiles for the product amines. The reactions initially give predominantly the (R) enantiomer of the chiral amine products with >90% ee but which then decreases significantly during the reaction.

View Article and Find Full Text PDF