Publications by authors named "Gemma Solanes"

UCP3 (uncoupling protein-3) is a mitochondrial membrane transporter expressed preferentially in skeletal muscle. UCP3 lowers mitochondrial membrane potential and protects muscle cells against an overload of fatty acids, and it probably reduces excessive production of reactive oxygen species. Accordingly, ucp3 gene transcription is highly sensitive to fatty acid-dependent stimulation and also to other unrelated stress signals.

View Article and Find Full Text PDF

Uncoupling protein-3 (UCP3) is a member of the mitochondrial carrier family expressed preferentially in skeletal muscle and heart. It appears to be involved in metabolic handling of fatty acids in a way that minimizes excessive production of reactive oxygen species. Fatty acids are powerful regulators of UCP3 gene transcription.

View Article and Find Full Text PDF

The transcription of the human UCP3 (uncoupling protein-3) gene in skeletal muscle is tightly regulated by metabolic signals related to fatty acid availability. However, changes in thyroid status also modulate UCP3 gene expression, albeit by unknown mechanisms. We created transgenic mice bearing the entire human UCP3 gene to investigate the effect of thyroid hormones on human UCP3 gene expression.

View Article and Find Full Text PDF

The mitochondrial uncoupling protein-3 is a member of the mitochondrial carrier protein family. As a homologue of the thermogenic brown fat uncoupling protein-1, it possesses a mitochondrial uncoupling activity and thus can influence cell energy metabolism but its exact biological function remains unclear. In the present study, uncoupling protein-3 was expressed in 293 cells using the tetracycline-inducible system and its impact on cell bioenergetics and responsiveness to the apoptotic stimulus was determined.

View Article and Find Full Text PDF

Uncoupling protein-3 (UCP3) gene is a member of the mitochondrial carrier superfamily preferentially expressed in skeletal muscle and up-regulated by fatty acids. Peroxisome proliferator-activated receptor (PPAR)alpha and PPARdelta (also known as PPARbeta) mediate human UCP3 gene regulation by fatty acids through a direct-repeat (DR-1) element in the promoter. DR-1 mutation renders UCP3 promoter unresponsive to PPAR ligand in vitro and consistently blocks gene induction by fatty acids in vivo.

View Article and Find Full Text PDF