Unlabelled: Nasopharyngeal carriage of staphylococci spreads potentially pathogenic strains into (peri)oral regions and increases the chance of cross-infections. Some laboratory strains can also move rapidly on hydrated agar surfaces, but the biological relevance of these observations is not clear. Using soft-agar [0.
View Article and Find Full Text PDFAs part of society-wide efforts to promote open access in science, the American Society for Microbiology journals are piloting the publication of companion articles highlighting rigorous data resources. The simultaneous publication of original research and data resource articles will increase awareness of, and access to, verified data sets that are critical to scientific progress. Companion articles in and two research journals, and , will serve as an initial experiment to promote open and reproducible science.
View Article and Find Full Text PDFAs part of society-wide efforts to promote open access in science, the American Society for Microbiology journals are piloting the publication of companion articles highlighting rigorous data resources. The simultaneous publication of original research and data resource articles will increase awareness of, and access to, verified data sets that are critical to scientific progress. Companion articles in and two research journals, and , will serve as an initial experiment to promote open and reproducible science.
View Article and Find Full Text PDFAs part of society-wide efforts to promote open access in science, the American Society for Microbiology journals are piloting the publication of companion articles highlighting rigorous data resources. The simultaneous publication of original research and data resource articles will increase awareness of, and access to, verified data sets that are critical to scientific progress. Companion articles in and two research journals, and , will serve as an initial experiment to promote open and reproducible science.
View Article and Find Full Text PDFThe identification of a diverse microbiome in otic secretions from healthy young adults challenged the entrenched dogma of middle ear sterility and underscored previously unknown roles for oral commensals in the seeding of otic biofilms. We gained insights into the selective forces that enrich for specific groups of oral migrants in the middle ear mucosa by investigating the phylogeny and physiology of 19 strains isolated previously from otic secretions and representing otic commensals () or transient migrants ( and actinobacterial and ). Phylogenetic analyses of full length 16S rRNA sequences recovered from partially sequenced genomes resolved close relationships between the isolates and (peri)oral commensals.
View Article and Find Full Text PDFThe ability of some metal-reducing bacteria to produce a rough (no O-antigen) lipopolysaccharide (LPS) could facilitate surface interactions with minerals and metal reduction. Consistent with this, the laboratory model metal reducer Geobacter sulfurreducens PCA produced two rough LPS isoforms (with or without a terminal methyl-quinovosamine sugar) when growing with the soluble electron acceptor fumarate but expressed only the shorter and more hydrophilic variant when reducing iron oxides. We reconstructed from genomic data conserved pathways for the synthesis of the rough LPS and generated heptosyltransferase mutants with partial (Δ) or complete (Δ) truncations in the core oligosaccharide.
View Article and Find Full Text PDFOxidative stress greatly limits current harvesting from anode biofilms in bioelectrochemical systems yet insufficient knowledge of the antioxidant responses of electricigens prevents optimization. Using PCA as a model electricigen, we demonstrated enhanced oxygen tolerance and reduced electron losses as the biofilms grew in height on the anode. To investigate the molecular basis of biofilm tolerance, we developed a genetic screening and isolated 11 oxygen-tolerant (oxt) strains from a library of transposon-insertion mutants.
View Article and Find Full Text PDFGeobacter biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and c-cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to bioremediation and bioenergy applications, little is known about the developmental stages leading to the formation of mature (>20 μm thick) electroactive biofilms. Thus, we developed a transposon mutagenesis method and a high-throughput screening assay and identified mutants of Geobacter sulfurreducens PCA interrupted in the initial stages of surface colonization (attachment and monolayer formation) and the vertical growth and maturation of multilayered biofilms.
View Article and Find Full Text PDFThe entrenched dogma of a sterile middle ear mucosa in health is incongruent with its periodic aeration and seeding with saliva aerosols. To test this, we sequenced 16S rRNA-V4 amplicons from otic secretions collected at the nasopharyngeal orifice of the tympanic tube and, as controls, oropharyngeal and buccal samples. The otic samples harbored a rich diversity of oral keystone genera and similar functional traits but were enriched in anaerobic genera in the Bacteroidetes ( and ), Fusobacteria ( and ) and Firmicutes () phyla.
View Article and Find Full Text PDFBacteria in the genus thrive in iron- and manganese-rich environments where the divalent cobalt cation (Co) accumulates to potentially toxic concentrations. Consistent with selective pressure from environmental exposure, the model laboratory representative grew with CoCl concentrations (1 mM) typically used to enrich for metal-resistant bacteria from contaminated sites. We reconstructed from genomic data canonical pathways for Co import and assimilation into cofactors (cobamides) that support the growth of numerous syntrophic partners.
View Article and Find Full Text PDFType IV pili (T4P) are bacterial appendages used for cell adhesion and surface motility. In metal-reducing bacteria in the genus Geobacter, they have the unique property of being conductive and essential to wire cells to extracellular electron acceptors and other cells within biofilms. These electroactive bacteria use a conserved pathway for biological assembly and disassembly of a short and aromatic dense peptide subunit (pilin).
View Article and Find Full Text PDFCytochrome nitrite reductase (NrfA) catalyzes the reduction of nitrite to ammonium in the dissimilatory nitrate reduction to ammonium (DNRA) pathway, a process that competes with denitrification, conserves nitrogen, and minimizes nutrient loss in soils. The environmental bacterium has recently been recognized as a key driver of DNRA in nature, but its enzymatic pathway is still uncharacterized. To address this limitation, here we overexpressed, purified, and characterized NrfA.
View Article and Find Full Text PDFNutrients and pesticides in agricultural runoff contribute to the degradation of water resources. Nitrates and phosphates can be remediated through the use of treatment systems such as woodchip bioreactors and adsorbent aggregate filters; however, concerns remain over potential effects of pesticides on nutrient removal efficiency in these systems. To test this, we designed laboratory-scale woodchip bioreactors equipped with secondary adsorbent aggregate filters and investigated the capacity of these systems to remediate nutrients when operated under two hydraulic retention times (HRT) and in the presence of commonly used pesticides.
View Article and Find Full Text PDFThe family Geobacteraceae, with its only valid genus Geobacter, comprises deltaproteobacteria ubiquitous in soil, sediments, and subsurface environments where metal reduction is an active process. Research for almost three decades has provided novel insights into environmental processes and biogeochemical reactions not previously known to be carried out by microorganisms. At the heart of the environmental roles played by Geobacter bacteria is their ability to integrate redox pathways and regulatory checkpoints that maximize growth efficiency with electron donors derived from the decomposition of organic matter while respiring metal oxides, particularly the often abundant oxides of ferric iron.
View Article and Find Full Text PDFGeobacter bacteria assemble a helical peptide of the Type IVa pilin subclass as conductive pili decorated with metal binding and reduction sites. We used recombinant techniques to synthesize thiolated pilin derivatives and self-assembled them on gold electrodes as a monolayer that concentrated the metal traps at the liquid interface. Cyclic and step potential voltammetry demonstrated the conductivity of the pilin films and their ability to bind and reductively precipitate divalent cobalt (Co) in a diffusion-controlled reaction characterized by fast binding kinetics, efficient charge transfer, and three-dimensional nanoparticle growth at discreet sites.
View Article and Find Full Text PDFGeobacter bacteria are the only microorganisms known to produce conductive appendages or pili to electronically connect cells to extracellular electron acceptors such as iron oxide minerals and uranium. The conductive pili also promote cell-cell aggregation and the formation of electroactive biofilms. The hallmark of these electroactive biofilms is electronic heterogeneity, mediated by coordinated interactions between the conductive pili and matrix-associated cytochromes.
View Article and Find Full Text PDFThe reduction of iron oxide minerals and uranium in model metal reducers in the genus Geobacter is mediated by conductive pili composed primarily of a structurally divergent pilin peptide that is otherwise recognized, processed and assembled in the inner membrane by a conserved Type IVa pilus apparatus. Electronic coupling among the peptides is promoted upon assembly, allowing the discharge of respiratory electrons at rates that greatly exceed the rates of cellular respiration. Harnessing the unique properties of these conductive appendages and their peptide building blocks in metal bioremediation will require understanding of how the pilins assemble to form a protein nanowire with specialized sites for metal immobilization.
View Article and Find Full Text PDFstrain Hulk is a newly sequenced strain isolated from chimney samples collected from the Hulk sulfide mound on the main Endeavour Segment of the Juan de Fuca Ridge (47.9501 latitude, -129.0970 longitude, depth 2200 m) in the Northeast Pacific Ocean.
View Article and Find Full Text PDFPower generation in microbial fuel cells implemented in constructed wetlands (CW-MFCs) is low despite the enrichment of anode electricigens most closely related to Geobacter lovleyi. Using the model representative G. lovleyi strain SZ, we show that acetate, but not formate or lactate, can be oxidized efficiently but growth is limited by the high sensitivity of the bacterium to oxygen.
View Article and Find Full Text PDF