Prolyl oligopeptidases from psychrophilic, mesophilic, and thermophilic organisms found in a range of natural environments are studied using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis to determine how the S9 protease family adapts to extreme thermal conditions. We compare our results with hypotheses from the literature regarding structural adaptations that allow proteins to maintain structure and function at extreme temperatures, and we find that, in the case of prolyl oligopeptidases, only a subset of proposed adaptations are employed for maintaining stability. The catalytic and propeller domains are highly structured, limiting the range of mutations that can be made to enhance hydrophobicity or form disulfide bonds without disrupting the formation of necessary secondary structure.
View Article and Find Full Text PDFCataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for lifelong lens transparency, so one might expect the ubiquitous lens crystallin superfamilies (α and βγ) to contain little cysteine.
View Article and Find Full Text PDFUnderstanding the molecular adaptations of organisms to extreme environments requires a comparative analysis of protein structure, function, and dynamics across species found in different environmental conditions. Computational studies can be particularly useful in this pursuit, allowing exploratory studies of large numbers of proteins under different thermal and chemical conditions that would be infeasible to carry out experimentally. Here, we perform such a study of the MEROPS family S11, S12, and S13 proteases from psychophilic, mesophilic, and thermophilic bacteria.
View Article and Find Full Text PDFThe main protease of SARS-CoV-2 (M) plays a critical role in viral replication; although it is relatively conserved, M has nevertheless evolved over the course of the COVID-19 pandemic. Here, we examine phenotypic changes in clinically observed variants of M, relative to the originally reported wild-type enzyme. Using atomistic molecular dynamics simulations, we examine effects of mutation on protein structure and dynamics.
View Article and Find Full Text PDFThe SARS-CoV-2 main protease (M) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new M mutations arising over time. Identification and structural characterization of M variants is thus critical for robust inhibitor design.
View Article and Find Full Text PDFThe Droserasins, aspartic proteases from the carnivorous plant , contain a 100-residue plant-specific insert (PSI) that is post-translationally cleaved and independently acts as an antimicrobial peptide. PSIs are of interest not only for their inhibition of microbial growth, but also because they modify the size of lipid vesicles and strongly interact with biological membranes. PSIs may therefore be useful for modulating lipid systems in NMR studies of membrane proteins.
View Article and Find Full Text PDFThe SARS-CoV-2 main protease (M ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant selection pressure, with new M mutations arising over time. Identification and structural characterization of M variants is thus critical for robust inhibitor design.
View Article and Find Full Text PDF