Publications by authors named "Gemma Olmos"

Article Synopsis
  • - The study investigates how age-related high phosphate levels (hyperphosphatemia) contribute to lung function decline in older animals, using C57BL6 mice and human lung cells for analysis.
  • - Findings show that older mice exhibited hyperphosphatemia, lung fibrosis, increased inflammation markers, and reduced respiratory function, which were linked to the activation of specific proteins (NFkB and ET-1).
  • - A low-phosphate diet for older mice improved lung conditions and function, underscoring the potential harmful effects of high phosphate levels with age, mediated through inflammation and fibrosis pathways.
View Article and Find Full Text PDF

Background: Sarcopenia is defined by the progressive and generalized loss of muscle mass and function associated with aging. We have previously proposed that aging-related hyperphosphataemia is linked with the appearance of sarcopenia signs. Because there are not effective treatments to prevent sarcopenia, except for resistance exercise, we propose here to analyse whether the dietary restriction of phosphate could be a useful strategy to improve muscle function and structure in an animal model of aging.

View Article and Find Full Text PDF

Aging impairs vascular function, but the mechanisms involved are unknown. The aim of this study was to analyze whether aging-related hyperphosphatemia is implied in this effect by elucidating the role of oxidative stress. C57BL6 mice that were aged 5 months (young) and 24 months (old), receiving a standard (0.

View Article and Find Full Text PDF

Background: Hyperphosphatemia has been related to the development of sarcopenia in aging mice. We describe the intracellular mechanisms involved in the impairment of the myogenic differentiation promoted by hyperphosphatemia and analyse these mechanisms in the muscle from older mice.

Methods: C C cells were grown in 2% horse serum in order to promote myogenic differentiation, in the presence or absence of 10 mM beta-glycerophosphate (BGP) for 7 days.

View Article and Find Full Text PDF

Uraemic toxins increase in serum parallel to a decline in the glomerular filtration rate and the development of sarcopenia in patients with chronic kidney disease (CKD). This study analyses the role of uraemic toxins in sarcopenia at different stages of CKD, evaluating changes in the muscular regeneration process. Cultured CC cells were incubated with a combination of indoxyl sulphate and p-cresol at high doses (100 µg/mL) or low doses (25 µg/mL and 10 µg/mL) resembling late or early CKD stages, respectively.

View Article and Find Full Text PDF

Endothelial dysfunction, with increased endothelin-1 (ET-1) synthesis, and sarcopenia, characterized by the loss of muscular mass and strength, are two aging-related conditions. However, a relationship between them has not been already established. The aim of this study was to determine whether ET-1 induces senescence and fibrosis in cultured murine myoblasts, which could be involved in the development of sarcopenia related to aging.

View Article and Find Full Text PDF

In mammalians, advancing age is associated with sarcopenia, the progressive and involuntary loss of muscle mass and strength. Hyperphosphatemia is an aging-related condition involved in several pathologies. The aim of this work was to assess whether hyperphosphatemia plays a role in the age-related loss of mass muscle and strength by inducing cellular senescence in murine myoblasts and to explore the intracellular mechanism involved in this effect.

View Article and Find Full Text PDF

Integrin-linked kinase (ILK) is a protein located in focal adhesion complexes that is linked to the cytoplasmic domain of integrin receptors. Together with PINCH and parvin, ILK forms the IPP complex, which is associated with conserved intracellular signalling pathways and integrin regulation of the actin cytoskeleton. ILK plays an essential role in a wide variety of cellular functions, including cell migration, differentiation, survival, and division.

View Article and Find Full Text PDF

Renal fibrosis and anaemia are two of the most relevant events in chronic kidney disease. Fibrosis is characterized by the accumulation of extracellular matrix proteins in the glomeruli and tubular interstitium. Anaemia is the consequence of a decrease in erythropoietin production in fibrotic kidneys.

View Article and Find Full Text PDF

Hyperphosphatemia is related to some pathologies, affecting vascular cell behavior. This work analyzes whether high concentration of extracellular phosphate induces endothelial senescence through up-regulation of endothelin-1 (ET-1), exploring the mechanisms involved. The phosphate donor β-glycerophosphate (BGP) in human endothelial cells increased ET-1 production, endothelin-converting enzyme-1 (ECE-1) protein, and mRNA expression, which depend on the AP-1 activation through ROS production.

View Article and Find Full Text PDF

Cellular senescence can be prematurely induced by oxidative stress involved in aging. In this work, we were searching for novel intermediaries in oxidative stress-induced senescence, focusing our interest on integrin-linked kinase (ILK), a scaffold protein at cell-extracellular matrix (ECM) adhesion sites, and on the Klotho gene. Cultured renal cells were treated with glucose oxidase (GOx) for long time periods.

View Article and Find Full Text PDF

Aging is conditioned by genetic and environmental factors. Hyperphosphatemia is related to some pathologies, affecting to vascular cells behavior. This work analyze whether high concentration of extracellular phosphate induces vascular smooth muscle cells senescence, exploring the intracellular mechanisms and highlighting the in vivo relevance of this phenomenon.

View Article and Find Full Text PDF

TNF-like weak inducer of apoptosis (TWEAK) is an inflammatory cytokine that activates the FGF-inducible 14 receptor. Both TWEAK and the FGF-inducible 14 receptor are constitutively expressed in the kidney. TWEAK has been shown to modulate several biological responses, such as inflammation, proliferation, differentiation, and apoptosis, that contribute to kidney injury.

View Article and Find Full Text PDF

Renal fibrosis is the final outcome of many clinical conditions that lead to chronic renal failure, characterized by a progressive substitution of cellular elements by extracellular-matrix proteins, in particular collagen type I. The aim of this study was to identify the mechanisms responsible for human mesangial cell survival, conditioned by changes in extracellular-matrix composition. Our results indicate that collagen I induces apoptosis in cells but only after inactivation of the pro-survival factor NFκB by either the super-repressor IκBα or the PDTC inhibitor.

View Article and Find Full Text PDF

The mechanisms involved in the continuous expression of constitutive genes are unclear. We hypothesize that steady state intracellular reactive oxygen species (ROS), which their levels are tightly maintained, could be regulating the expression of these constitutive genes in resting cells. We analyzed the regulation of an important constitutive gene, TGF-β1, after decreasing intracellular ROS concentration in human mesangial cells.

View Article and Find Full Text PDF

Hypoxia-inducible factor-1alpha (HIF-1alpha) protein is degraded under normoxia by its association to von Hippel-Lindau protein (pVHL) and further proteasomal digestion. However, human renal cells HK-2 treated with 15-deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) accumulate HIF-1alpha in normoxic conditions. Thus, we aimed to investigate the mechanism involved in this accumulation.

View Article and Find Full Text PDF

15-deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) is a peroxisome-activated proliferator receptor-gamma (PPARgamma) agonist which contains an alpha,beta-unsaturated electrophilic ketone involved in nucleophilic addition reactions to thiols. Here we studied its effect on hypoxia-inducible factor-1alpha (HIF-1alpha) in human proximal tubular cells HK-2. 15d-PGJ(2) induced stabilization of HIF-1alpha protein, without affecting HIF-1alpha mRNA levels or proteasome activity, leading to its nuclear accumulation and activation of HIF-induced transcription.

View Article and Find Full Text PDF

Background: The apoptosis action induced by hydroxyurea or etoposide in interleukin 3-dependent lymphoma cells (DA-1) was studied.

Materials And Methods: The conditions to study apoptosis of these cells were 17 hours of cell treatment with concentrations of 1.25 mM hydroxyurea or 100 microM etoposide using flow cytometry, fluorometry and immunoblots techniques.

View Article and Find Full Text PDF

Hypoxia-inducible factors (HIF) are heterodimeric (alpha/beta) transcription factors that play a fundamental role in cellular adaptation to low oxygen tension. In the presence of oxygen, the HIF-alpha subunit becomes hydroxylated at specific prolyl residues by prolyl hydroxylases. This post-translational modification is recognized by the von Hippel-Lindau (VHL) protein, which targets HIF-alpha for degradation.

View Article and Find Full Text PDF

Background: The apoptosis induction by etoposide or hydroxyurea in mouse interleukin 3-dependent lymphoma cells (DA-1) was studied. Treatments with 1.25 mM hydroxyurea and 100 microM etoposide for 17 hours were considered appropriate concentrations for such studies.

View Article and Find Full Text PDF

Hypoxia-inducible factor 1 (HIF-1) is a critical transcription factor for the adaptation to lowered oxygen environments. We have previously reported that hypoxia induced phosphatidic acid (PA) accumulation through diacylglycerol kinase (DGK) activity and provided evidence that this PA production regulated HIF-1 expression. Here we report that hypoxia also produces a marked intracellular accumulation of diacylglycerol (DAG) in different cell types.

View Article and Find Full Text PDF

In the present work, we have studied the toxic action of etoposide on mouse peritoneal macrophages. First, we have determined the induction of DNA fragmentation by this antitumour compound. To study the possible influence of interleukin 3 on the effects of etoposide on mouse macrophages, we studied intracellular protein phosphorylation induced by interleukin 3.

View Article and Find Full Text PDF

Hypoxia-inducible factors (HIF-1/HIF-2) govern the expression of critical genes for cellular adaptation to low oxygen tensions. We have previously reported that the intracellular level of phosphatidic acid (PA) rises in response to hypoxia (1% O(2)). In this report, we have explored whether components of the canonical HIF/von Hippel-Lindau (VHL) pathway are involved in the induction of PA.

View Article and Find Full Text PDF

Most of the genes induced by hypoxia are regulated by a family of transcription factors termed hypoxia-inducible factors (HIF). Under normoxic conditions, HIFalpha proteins are very unstable due to hydroxylation by a recently described family of proline hydroxylases termed EGL-Nine homologs (EGLN). Upon hydroxylation, HIFalpha is recognized by the product of the tumor suppressor vhl and targeted for proteosomal degradation.

View Article and Find Full Text PDF