Epichloë festucae is a mutualistic symbiont that systemically colonizes the intercellular spaces of Lolium perenne leaves to form a highly structured and interconnected hyphal network. In an Agrobacterium tumefaciens T-DNA forward genetic screen, we identified a mutant TM1066 that had a severe host interaction phenotype, causing stunting and premature senescence of the host. Molecular analysis revealed that the mutation responsible for this phenotype was in the cell-wall integrity (CWI) mitogen-activated protein kinase kinase (MAPKK), mkkA.
View Article and Find Full Text PDFTransformation is an essential tool for modern fungal research and has played a fundamental role in gaining insight into gene function. Polyethylene glycol (PEG)-mediated transformation of protoplasts is the most commonly used method for genetic transformation of filamentous fungi. Selectable marker genes, that confer resistance to antibiotics, are generally incorporated with the DNA of interest, allowing transformed cells to grow through the antibiotic overlay.
View Article and Find Full Text PDFTranscription factors containing a Zn(II)2 Cys6 binuclear cluster DNA-binding domain are unique to fungi and are key regulators of fungal growth and development. The C6-Zn transcription factor, Pro1, in Sordaria macrospora is crucial for maturation of sexual fruiting bodies. In a forward genetic screen to identify Epichloë festucae symbiosis genes we identified a mutant with an insertion in proA.
View Article and Find Full Text PDFOne of the central regulators of oxidative stress in Saccharomyces cerevisiae is Yap1, a bZIP transcription factor of the AP-1 family. In unstressed cells, Yap1 is reduced and cytoplasmic, but in response to oxidative stress, it becomes oxidized and accumulates in the nucleus. To date, there have been no reports on the role of AP-1-like transcription factors in symbiotic fungi.
View Article and Find Full Text PDF