Publications by authors named "Gemma E Rooney"

Unlabelled: Increasing evidence implicates abnormal Ras signaling as a major contributor in neurodevelopmental disorders, yet how such signaling causes cortical pathogenesis is unknown. We examined the consequences of aberrant Ras signaling in the developing mouse brain and uncovered several critical phenotypes, including increased production of cortical neurons and morphological deficits. To determine whether these phenotypes are recapitulated in humans, we generated induced pluripotent stem (iPS) cell lines from patients with Costello syndrome (CS), a developmental disorder caused by abnormal Ras signaling and characterized by neurodevelopmental abnormalities, such as cognitive impairment and autism.

View Article and Find Full Text PDF

Astrocytes produce an assortment of signals that promote neuronal maturation according to a precise developmental timeline. Is this orchestrated timing and signaling altered in human neurodevelopmental disorders? To address this question, the astroglial lineage was investigated in two model systems of a developmental disorder with intellectual disability caused by mutant Harvey rat sarcoma viral oncogene homolog (HRAS) termed Costello syndrome: mutant HRAS human induced pluripotent stem cells (iPSCs) and transgenic mice. Human iPSCs derived from patients with Costello syndrome differentiated to astroglia more rapidly in vitro than those derived from wild-type cell lines with normal HRAS, exhibited hyperplasia, and also generated an abundance of extracellular matrix remodeling factors and proteoglycans.

View Article and Find Full Text PDF

The use of multichannel polymer scaffolds in a complete spinal cord transection injury serves as a deconstructed model that allows for control of individual variables and direct observation of their effects on regeneration. In this study, scaffolds fabricated from positively charged oligo[poly(ethylene glycol)fumarate] (OPF(+)) hydrogel were implanted into rat spinal cords following T9 complete transection. OPF(+) scaffold channels were loaded with either syngeneic Schwann cells or mesenchymal stem cells derived from enhanced green fluorescent protein transgenic rats (eGFP-MSCs).

View Article and Find Full Text PDF

Background Aims: In this study we investigated the effect of neurotrophin-3 (NT-3) and knockdown of NG2, one of the main inhibitory chondroitin sulfate proteoglycans (CSPG), in the glial scar following spinal cord injury (SCI).

Methods: Short hairpin (sh) RNA were designed to target NG2 and were cloned into a lentiviral vector (LV). A LV was also constructed containing NT-3.

View Article and Find Full Text PDF
Article Synopsis
  • The study uses a rat spinal cord model to compare different biodegradable polymer scaffolds for their effectiveness in promoting nerve regeneration after spinal cord injury.
  • Various scaffolds, including Schwann cell-loaded OPF and PCLF, showed promising mechanical properties similar to the rat spinal cord and supported axonal growth.
  • PCLF and OPF+ resulted in significantly more axonal regeneration compared to PLGA, with OPF+ showing superior central axonal distribution and smaller cyst volumes compared to PLGA, indicating potential for improved strategies in tissue engineering.
View Article and Find Full Text PDF

This study describes the use of oligo [(polyethylene glycol) fumarate] (OPF) hydrogel scaffolds as vehicles for sustained delivery of dibutyryl cyclic adenosine monophosphate (dbcAMP) to the transected spinal cord. dbcAMP was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres, which were embedded within the scaffolds architecture. Functionality of the released dbcAMP was assessed using neurite outgrowth assays in PC12 cells and by delivery to the transected spinal cord within OPF seven channel scaffolds, which had been loaded with Schwann cells or mesenchymal stem cells (MSCs).

View Article and Find Full Text PDF

Background: Following spinal cord injury, a highly inhibitory environment for axonal regeneration develops. One of the main sources of this inhibition is the glial scar that is formed after injury by reactive astrocytes. The inhibitory environment is mainly a result of chondroitin sulphate proteoglycans (CSPGs).

View Article and Find Full Text PDF

Issues related to the intra-cerebral delivery of glial cell line-derived neurotrophic factor (GDNF) have hampered its progression as a neuroprotective therapy for Parkinson's disease. Ex vivo gene therapy, where cells are virally transduced in vitro to produce a specific protein, may circumvent some of the problems associated with direct delivery of this neurotrophin to the brain. In this regard, bone marrow-derived mesenchymal stem cells (MSCs) offer an ideal cell source for ex vivo gene therapy because they are easily isolated from autologous sources, they are amenable to viral transduction and expansion in vitro, and they are hypoimmunogenic and non-tumourigenic in the brain.

View Article and Find Full Text PDF

Background Aims: Spinal cord injury is a devastating injury that impacts drastically on the victim's quality of life. Stem cells have been proposed as a therapeutic strategy. Neural stem (NS) cells have been harvested from embryonic mouse forebrain and cultured as adherent cells.

View Article and Find Full Text PDF

Object: Glial scar and cystic formation greatly contribute to the inhibition of axonal regeneration after spinal cord injury (SCI). Attempts to promote axonal regeneration are extremely challenging in this type of hostile environment. The objective of this study was to examine the surgical methods that may be used to assess the factors that influence the level of scar and cystic formation in SCI.

View Article and Find Full Text PDF

Considerable evidence has shown that the immunosuppressant drug cyclosporin A (CsA) may have neuroprotective properties which can be exploited in the treatment of spinal cord injury. The aim of this study was to investigate the cellular environment within the spinal cord following injury and determine whether CsA has an effect on altering cellular interactions to promote a growth-permissive environment. CsA was administered to a group of rats 4 days after they endured a moderate contusion injury.

View Article and Find Full Text PDF

Regeneration of endogenous axons through a Schwann cell (SC)-seeded scaffold implant has been demonstrated in the transected rat spinal cord. The formation of a cellular lining in the scaffold channel may limit the degree of axonal regeneration. Spinal cords of adult rats were transected and implanted with the SC-loaded polylactic co-glycollic acid (PLGA) scaffold implants containing seven parallel-aligned channels, either 450mum (n=19) or 660microm in diameter (n=14).

View Article and Find Full Text PDF

The aim of this study was to assess the feasibility of transplanting mesenchymal stem cells (MSCs), genetically modified to express glial-derived neurotrophic factor (GDNF), to the contused rat spinal cord, and to subsequently assess their neural differentiation potential. MSCs expressing green fluorescent protein were transduced with a retroviral vector to express the neurotrophin GDNF. The transduction protocol was optimized by using green fluorescent protein-expressing retroviral constructs; approximately 90% of MSCs were transduced successfully after G418 selection.

View Article and Find Full Text PDF

Biodegradable polymer scaffolds provide an excellent approach to quantifying critical factors necessary for restoration of function after a transection spinal cord injury. Neural stem cells (NSCs) and Schwann cells (SCs) support axonal regeneration. This study examines the compatibility of NSCs and SCs with the poly-lactic-co-glycolic acid polymer scaffold and quantitatively assesses their potential to promote regeneration after a spinal cord transection injury in rats.

View Article and Find Full Text PDF

Study Design: A controlled study to evaluate a new technique for spinal rod fixation after spinal cord injury in rats. Alignment of implanted tissue-engineered scaffolds was assessed radiographically and by magnetic resonance imaging.

Objective: To evaluate the stability of implanted scaffolds and the extent of kyphoscoliotic deformities after spinal fixation.

View Article and Find Full Text PDF

The aims of this research were to examine the neural expression profile of undifferentiated mesenchymal stem cells (MSCs), to define a serum-free environment that would support the survival of MSCs, and to assess the effects of elevated cyclic adenosine monophosphate (cAMP) levels on MSC morphology and expression of neural markers. The neural profile of MSCs was assessed using immunocytochemistry and real-time polymerase chain reaction (PCR) techniques. These MSCs were then cultured in varying serum-free environments, with flow cytometry analysis of cell viability and apoptosis.

View Article and Find Full Text PDF

Delivery of cellular and/or trophic factors to the site of injury may promote neural repair or regeneration and return of function after peripheral nerve or spinal cord injury. Engineered scaffolds provide a platform to deliver therapeutic cells and neurotrophic molecules. We have genetically engineered mesenchymal stem cells (MSCs) from the green rat (CZ-004 [SD TgN(act-EGFP)OsbCZ-004]) to express nerve growth factor (NGF) using an adenoviral vector.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: