Mutations of p53 protein occur in over half of all cancers, with profound effects on tumor biology. We present the first-to our knowledge-method for noninvasive visualization of p53 in tumor tissue in vivo, using SPECT, in 3 different models of cancer. Anti-p53 monoclonal antibodies were conjugated to the cell-penetrating transactivator of transcription (TAT) peptide and a metal ion chelator and then radiolabeled with In to allow SPECT imaging.
View Article and Find Full Text PDFPoly(adenosine diphosphate ribose) polymerase (PARP) has emerged as an effective therapeutic strategy against cancer that targets the DNA damage repair enzyme. PARP-targeting compounds radiolabeled with an Auger electron-emitting radionuclide can be trapped close to damaged DNA in tumor tissue, where high ionizing potential and short range lead Auger electrons to kill cancer cells through the creation of complex DNA damage, with minimal damage to surrounding normal tissue. Here, we report on [I]CC1, an I-labeled PARP inhibitor for radioligand therapy of cancer.
View Article and Find Full Text PDFIntroduction: Radioligand therapy (RLT) is an expanding field that has shown great potential in the fight against cancer. Radionuclides that can be carried by selective ligands such as antibodies, peptides, and small molecules targeting cancerous cells have demonstrated a clear improvement in the move towards precision medicine. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage repair signalling pathway, with PARP inhibitors olaparib, talazoparib, niraparib, veliparib, and rucaparib having FDA approval for cancer therapy in routine clinical use.
View Article and Find Full Text PDFPurpose: Radiopharmaceuticals targeting poly(ADP-ribose) polymerase (PARP) have emerged as promising agents for cancer diagnosis and therapy. PARP enzymes are expressed in both cancerous and normal tissue. Hence, the injected mass, molar activity and potential pharmacological effects are important considerations for the use of radiolabelled PARP inhibitors for diagnostic and radionuclide therapeutic applications.
View Article and Find Full Text PDFPurpose: Ataxia telangiectasia mutated (ATM) is a key mediator of the DNA damage response, and several ATM inhibitors (ATMi) are currently undergoing early phase clinical trials for the treatment of cancer. A radiolabelled ATMi to determine drug pharmacokinetics could assist patient selection in a move towards more personalised medicine. The aim of this study was to synthesise and investigate the first F-labelled ATM inhibitor [F]1 for non-invasive imaging of ATM protein and ATMi pharmacokinetics.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
September 2022
Purpose: Rucaparib, an FDA-approved PARP inhibitor, is used as a single agent in maintenance therapy to provide promising treatment efficacy with an acceptable safety profile in various types of BRCA-mutated cancers. However, not all patients receive the same benefit from rucaparib-maintenance therapy. A predictive biomarker to help with patient selection for rucaparib treatment and predict clinical benefit is therefore warranted.
View Article and Find Full Text PDFImaging of intranuclear epitopes using antibodies tagged to cell-penetrating peptides has great potential given its versatility, specificity, and sensitivity. However, this process is technically challenging because of the location of the target. Previous research has demonstrated a variety of intranuclear epitopes that can be targeted with antibody-based radioimmunoconjugates.
View Article and Find Full Text PDFBackground: Poly (ADP-ribose) polymerase (PARP) inhibitors are extensively studied and used as anti-cancer drugs, as single agents or in combination with other therapies. Most radiotracers developed to date have been chosen on the basis of strong PARP1-3 affinity. Herein, we propose to study AZD2461, a PARP inhibitor with lower affinity towards PARP3, and to investigate its potential for PARP targeting in vivo.
View Article and Find Full Text PDFDespite its widespread use in oncology, the PET radiotracer F-FDG is ineffective for improving early detection of pancreatic ductal adenocarcinoma (PDAC). An alternative strategy for early detection of pancreatic cancer involves visualization of high-grade pancreatic intraepithelial neoplasias (PanIN-3s), generally regarded as the noninvasive precursors of PDAC. The DNA damage response is known to be hyperactivated in late-stage PanINs.
View Article and Find Full Text PDFA magnetic resonance (MR)-, computed tomography (CT)-, single-photon emission computed tomography (SPECT)-, and positron emission tomography (PET)-compatible carbon-fiber sheet resistor for temperature maintenance in small animals where space limitations prevent the use of circulating fluids was developed. A 250 Ω carbon-fiber sheet resistor was mounted to the underside of an imaging cradle. Alternating current, operating at 99 kHz, and with a power of 1-2 W, was applied to the resistor providing a cradle base temperature of ∼37°C.
View Article and Find Full Text PDFWhile radiolabelled antibodies have found great utility as PET and SPECT imaging agents in oncological investigations, a notable shortcoming of these agents is their propensity to accumulate non-specifically within tumour tissue. The degree of this non-specific contribution to overall tumour uptake is highly variable and can ultimately lead to false conclusions. Therefore, in an effort to obtain a reliable measure of inter-individual differences in non-specific tumour uptake of radiolabelled antibodies, we demonstrate that the use of dual-isotope imaging overcomes this issue, enables true quantification of epitope expression levels, and allows non-invasive in vivo immunohistochemistry.
View Article and Find Full Text PDFIntroduction: Zirconium-89 (Zr, t=78.4h) liquid target (LT) production offers an approach to introduce this positron-emitting isotope to cyclotron centres without the need for a separate solid target (ST) production set up. We compared the production, purification, and antibody radiolabeling yields of Zr-(LT) and Zr-(ST), and assessed the feasibility of Zr-(LT) for preclinical PET/CT.
View Article and Find Full Text PDFPotentially nonadentate (NO) bifunctional chelator p-SCN-Bn-Hneunpa and its immunoconjugate Hneunpa-trastuzumab for In radiolabeling are synthesized. The ability of p-SCN-Bn-Hneunpa and Hneunpa-trastuzumab to quantitatively radiolabel InCl at an ambient temperature within 15 or 30 min, respectively, is presented. Thermodynamic stability determination with In, Bi, and La resulted in high conditional stability constant (pM) values.
View Article and Find Full Text PDFTwo compact and symmetrical bifunctional tetrahydroxamate chelators, 1 and 2, were synthesized and evaluated for labeling antibodies with Zr for imaging with positron emission tomography. Using 2,2'-iminodiacetamide as the backbone, four hydroxamate-containing moieties coupled to the diacetamide nitrogen were used for Zr labeling, while a pendant connected to the amino group provided an isothiocyanate group for coupling to the antibody. Both 1- and 2-conjugated Trastuzumab were labeled with Zr efficiently (>90% radiolabeling yield), and their Zr-labeled products maintained comparable immunoreactivity to Trastuzumab.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2014
A new zwitterionic organotrifluoroborate is appended to three radiosynthons that afford undergo facile bioconjugation to several clinically relevant peptides and one enzyme inhibitor. Molecularly complex bioconjugates are (18)F-labeled in a single aqueous step in rapid time (<15 min) without HPLC purification to afford tracers in good yields (>200 mCi, 20-40%) at high specific activity (≥3 Ci/μmol) and at >98% purity. PET imaging shows in vivo stability and tumor uptake.
View Article and Find Full Text PDF