Publications by authors named "Gemma C Carter"

Recent studies provide compelling evidence that HIV-1 entry in cell lines and lymphocytes proceeds by endocytosis, but these studies are still lacking in macrophages, an important natural target cell for HIV-1. Macrophages exhibit continual and extensive endocytic activity as part of their natural functions, so we investigated the uptake pathways involved in productive HIV-1 entry. We find that caveolae are not utilised by HIV-1, because the main structural proteins, caveolin-1 and 2 are absent from most human leukocytes.

View Article and Find Full Text PDF

The extracellular enveloped virus (EEV) form of vaccinia virus (VACV) is surrounded by two lipid envelopes. This presents a topological problem for virus entry into cells, because a classical fusion event would only release a virion surrounded by a single envelope into the cell. Recently, we described a mechanism in which the EEV outer membrane is disrupted following interaction with glycosaminoglycans (GAGs) on the cell surface and thus allowing fusion of the inner membrane with the plasma membrane and penetration of a naked core into the cytosol.

View Article and Find Full Text PDF

Macrophages are an important natural target cell for HIV-1, but previous studies of virus entry into these cells are limited, and the involvement of membrane cholesterol and lipid rafts is unknown. Cholesterol disruption of macrophage membranes using four pharmacological agents acting by different mechanisms: methyl-beta cyclodextrin, nystatin, filipin complex and Lovastatin, all significantly inhibited productive HIV entry and reverse transcription. The inhibitory effects of these drugs resulted in decreased virus release from infected cells, and could be substantially reversed by the addition of water-soluble cholesterol.

View Article and Find Full Text PDF

Hitherto, all enveloped viruses were thought to shed their lipid membrane during entry into cells by membrane fusion. The extracellular form of Vaccinia virus has two lipid envelopes surrounding the virus core, and consequently a single fusion event will not deliver a naked core into the cell. Here we report a previously underscribed mechanism in which the outer viral membrane is disrupted by a ligand-induced nonfusogenic reaction, followed by the fusion of the inner viral membrane with the plasma membrane and penetration of the virus core into the cytoplasm.

View Article and Find Full Text PDF

Vaccinia virus (VACV) produces two distinct enveloped virions, the intracellular mature virus (IMV) and the extracellular enveloped virus (EEV), but the entry mechanism of neither virion is understood. Here, the binding and entry of IMV particles have been investigated. The cell receptors for IMV are unknown, but it was proposed that IMV can bind to glycosaminoglycans (GAGs) on the cell surface and three IMV surface proteins have been implicated in this.

View Article and Find Full Text PDF

Infection with Vaccinia virus (VV) produces several distinct virions called intracellular mature virus (IMV), intracellular enveloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV). In this report, we have investigated how incoming virus cores derived from IMV are transported within the cell. To do this, recombinant VVs (vA5L-EGFP-N and vA5L-EGFP-C) were generated in which the A5L virus core protein was fused with the enhanced green fluorescent protein (EGFP) at the N or C terminus.

View Article and Find Full Text PDF