The floating phase, a critical incommensurate phase, has been theoretically predicted as a potential intermediate phase between crystalline ordered and disordered phases. In this study, we investigate the different quantum phases that arise in ladder arrays comprising up to 92 neutral-atom qubits and experimentally observe the emergence of the quantum floating phase. We analyze the site-resolved Rydberg state densities and the distribution of state occurrences.
View Article and Find Full Text PDFRealizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial dimensions, we experimentally investigate quantum algorithms for solving the maximum independent set problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize closed-loop optimization to test several variational algorithms, and subsequently apply them to systematically explore a class of graphs with programmable connectivity.
View Article and Find Full Text PDFThe quantum statistics of bosons or fermions are manifest through the even or odd relative angular momentum of a pair. We show theoretically that, under certain conditions, a pair of certain test particles immersed in a fractional quantum Hall state possesses, effectively, a fractional relative angular momentum, which can be interpreted in terms of fractional braid statistics. We propose that the fractionalization of the angular momentum can be detected directly through the measurement of the pair correlation function in rotating ultracold atomic systems in the fractional quantum Hall regime.
View Article and Find Full Text PDFWe present the design, construction, and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper arcs and insulating polyester spacers. Efficient cooling of the copper is achieved via parallel rectangular water cooling channels between copper layers with low resistance to flow; a high ratio of the water-cooled surface area to the volume of copper ensures a short length scale (~1 mm) to extract dissipated heat.
View Article and Find Full Text PDFThe collective behaviour of a many-body system near a continuous phase transition is insensitive to the details of its microscopic physics; for example, thermodynamic observables follow generalized scaling laws near the phase transition. The Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two-dimensional Bose gases presents a particularly interesting case because the marginal dimensionality and intrinsic scaling symmetry result in a broad fluctuation regime and an extended range of universal scaling behaviour. Studies of the BKT transition in cold atoms have stimulated great interest in recent years, but a clear demonstration of critical behaviour near the phase transition has remained elusive.
View Article and Find Full Text PDFWe study transport dynamics of ultracold cesium atoms in a two-dimensional optical lattice across the superfluid-Mott-insulator transition based on in situ imaging. Inducing the phase transition with a lattice ramping routine expected to be locally adiabatic, we observe a global mass redistribution which requires a very long time to equilibrate, more than 100 times longer than the microscopic time scales for on-site interaction and tunneling. When the sample enters the Mott-insulator regime, mass transport significantly slows down.
View Article and Find Full Text PDFWe describe new techniques in the construction of optical lattices to realize a coherent atom-based microscope, comprised of two atomic species used as target and probe atoms, each in an independently controlled optical lattice. Precise and dynamic translation of the lattices allows atoms to be brought into spatial overlap to induce atomic interactions. For this purpose, we have fabricated two highly stable, hexagonal optical lattices, with widely separated wavelengths but identical lattice constants using diffractive optics.
View Article and Find Full Text PDFThe observation of the superfluid to Mott insulator phase transition of ultracold atoms in optical lattices was an enabling discovery in experimental many-body physics, providing the first tangible example of a quantum phase transition (one that occurs even at zero temperature) in an ultracold atomic gas. For a trapped gas, the spatially varying local chemical potential gives rise to multiple quantum phases within a single sample, complicating the interpretation of bulk measurements. Here we report spatially resolved, in-situ imaging of a two-dimensional ultracold atomic gas as it crosses the superfluid to Mott insulator transition, providing direct access to individual characteristics of the insulating, superfluid and normal phases.
View Article and Find Full Text PDFPhys Rev Lett
October 2005
We observe the sudden growth of small classes of Bloch waves from atomic Bose-Einstein condensates held in periodically translated optical lattices. The effect is explained by narrowband parametric amplification of Bloch waves from noise, due to phase-matched scattering of atom pairs out of the condensate. Amplification occurs above a well-defined modulation threshold, described by dynamic shaping of single-particle band structure.
View Article and Find Full Text PDF