In this study, we analyzed the metabolite features of the yeasts Saccharomyces cerevisiae, Naumovia castellii, and Saccharomyces mikatae. The three species are closely related genetically but differ in their tolerance of desiccation stress. Specifically, we determined whether certain metabolites correlated with cell viability after stress imposition.
View Article and Find Full Text PDFRecently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations.
View Article and Find Full Text PDFOctanoic (C8) and decanoic (C10) acids are produced in hypoxic conditions by the yeast Saccharomyces cerevisiae as by-products of its metabolism and are considered fermentation inhibitors in the presence of ethanol at acidic pH. This study aims to broaden our understanding of the physiological limits between toxicity and ester production in yeast cells. To this end, the non-inhibitory concentration (NIC) and maximum inhibitory concentration (MIC) values were first established for C8 and C10 at physiological pH (5.
View Article and Find Full Text PDFIn the last few decades spontaneous grape must fermentations have been replaced by inoculated fermentation with Saccharomyces cerevisiae strains as active dry yeast (ADY). Among the essential genes previously characterized to overcome the cell-drying/rehydration process, six belong to the group of very hydrophilic proteins known as hydrophilins. Among them, only SIP18 has shown early transcriptional response during dehydration stress.
View Article and Find Full Text PDFThe yeast Saccharomyces cerevisiae is able to overcome cell dehydration; cell metabolic activity is arrested during this period but restarts after rehydration. The yeast genes encoding hydrophilin proteins were characterised to determine their roles in the dehydration-resistant phenotype, and STF2p was found to be a hydrophilin that is essential for survival after the desiccation-rehydration process. Deletion of STF2 promotes the production of reactive oxygen species and apoptotic cell death during stress conditions, whereas the overexpression of STF2, whose gene product localises to the cytoplasm, results in a reduction in ROS production upon oxidative stress as the result of the antioxidant capacity of the STF2p protein.
View Article and Find Full Text PDF