Photosystem I (PSI) light-harvesting antenna complexes LHCI contain spectral forms that absorb and emit photons of lower energy than that of its primary electron donor, P700. The most red-shifted fluorescence is associated with the Lhca4 complex. It has been suggested that this red emission is related to the inter-chlorophyll charge transfer (CT) states.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
November 2024
In the field of photosynthesis, only a limited number of approaches of super-resolution fluorescence microscopy can be used, as the functional architecture of the thylakoid membrane in chloroplasts is probed through the natural fluorescence of chlorophyll molecules. In this work, we have used a custom-built fluorescence microscopy method called Single Pixel Reconstruction Imaging (SPiRI) that yields a 1.4 gain in lateral and axial resolution relative to confocal fluorescence microscopy, to obtain 2D images and 3D-reconstucted volumes of isolated chloroplasts, obtained from pea (Pisum sativum), spinach (Spinacia oleracea) and Arabidopsis thaliana.
View Article and Find Full Text PDFTo investigate the efficacy and safety of one-year treatment with 0.03% atropine eye drops for slowing myopia progression among children aged 6-12 years. Healthy Caucasian children aged 6-12 years with cycloplegic spherical equivalent (SE) from -1.
View Article and Find Full Text PDFFluorescence concentration quenching occurs when increasing molecular concentration of fluorophores results in a decreasing fluorescence quantum yield. Even though this phenomenon has been studied for decades, its mechanisms and signatures are not yet fully understood. The complexity of the problem arises due to energy migration and trapping in huge networks of molecules.
View Article and Find Full Text PDFDiatoms, a major group of algae, account for about a quarter of the global primary production on Earth. These photosynthetic organisms face significant challenges due to light intensity variations in their underwater habitat. To avoid photodamage, they have developed very efficient non-photochemical quenching (NPQ) mechanisms.
View Article and Find Full Text PDFMyopia is the most common ocular disorder worldwide with an increasing prevalence over the past few decades. It is a refractive error associated with excessive growth of the eyeball. Individuals with myopia, especially high myopia, are prone to develop sight-threatening complications.
View Article and Find Full Text PDFThe best perovskite solar cells currently demonstrate more than 25% efficiencies, yet many fundamental processes that determine the operation of these devices are still not fully understood. In particular, even though the device performance strongly depends on charge carrier transport across the perovskite layer to selective electrodes, information about this process is still very controversial. Here, we investigate charge carrier motion and extraction from an archetypical CHNHPbI (MAPI) perovskite solar cell.
View Article and Find Full Text PDFDiatoms are a group of marine algae that are responsible for a significant part of global oxygen production. Adapted to life in an aqueous environment dominated by the blue-green light, their major light-harvesting antennae-fucoxanthin-chlorophyll protein complexes (FCPs)-exhibit different pigment compositions than of plants. Despite extensive experimental studies, until recently the theoretical description of excitation energy dynamics in these complexes was limited by the lack of high-resolution structural data.
View Article and Find Full Text PDFNeurotrophic keratitis is a rare degenerative disease of the cornea that can lead to corneal ulceration, scarring, and significant visual impairment. It most commonly occurs in adults and is rarely diagnosed in children. Congenital corneal anesthesia is an extremely rare condition that requires appropriate ophthalmologists' attention in making diagnosis and treatment decisions.
View Article and Find Full Text PDFStark spectroscopy experiments are widely used to study the properties of molecular systems, particularly those containing charge-transfer (CT) states. However, due to the small transition dipole moments and large static dipole moments of the CT states, the standard interpretation of the Stark absorption and Stark fluorescence spectra in terms of the Liptay model may be inadequate. In this work, we provide a theoretical framework for calculations of Stark absorption and Stark fluorescence spectra and propose new methods of simulations that are based on the quantum-classical theory.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2021
Absorption and fluorescence spectroscopy techniques provide a wealth of information on molecular systems. The simulations of such experiments remain challenging, however, despite the efforts put into developing the underlying theory. An attractive method of simulating the behavior of molecular systems is provided by the quantum-classical theory─it enables one to keep track of the state of the bath explicitly, which is needed for accurate calculations of fluorescence spectra.
View Article and Find Full Text PDFLeber hereditary optic neuropathy (LHON) is one of the most common inherited mitochondrial optic neuropathies, caused by mitochondrial DNA (mtDNA) mutations. Three most common mutations, namely , and , account for the majority of LHON cases. These mutations lead to mitochondrial respiratory chain complex I damage.
View Article and Find Full Text PDFDiatoms are a major group of algae, responsible for a quarter of the global primary production on our planet. Their adaptation to marine environments is ensured by their light-harvesting antenna - the fucoxanthin-chlorophyll protein (FCP) complex, which absorbs strongly in the blue-green spectral region. Although these essential proteins have been the subject of many studies, for a long time their comprehensive description was not possible in the absence of structural data.
View Article and Find Full Text PDFThe light-harvesting complexes (LHCs) of plants can regulate the level of excitation in the photosynthetic membrane under fluctuating light by switching between different functional states with distinct fluorescence properties. One of the most fascinating yet obscure aspects of this regulation is how the vast conformational landscape of LHCs is modulated in different environments. Indeed, while in isolated antennae the highly fluorescent light-harvesting conformation dominates, LHC aggregates display strong fluorescence quenching, representing therefore a model system for the process of energy dissipation developed by plants to avoid photodamage in high light.
View Article and Find Full Text PDFVarious quantum-classical approaches to the simulation of processes taking place in real molecular systems have been shown to provide quantitatively correct results in a number of scenarios. However, it is not immediately clear how strongly the approximations related to the classical treatment of the system's environment compromise the accuracy of these methods. In this work, we present the analysis of the accuracy of the forward-backward trajectory solution (FBTS) of the quantum-classical Liouville equation.
View Article and Find Full Text PDFCalculation of the equilibrium state of an open quantum system interacting with a bath remains a challenge to this day, mostly due to a huge number of bath degrees of freedom. Here, we present an analytical expression for the reduced density operator in terms of an effective Hamiltonian for a high temperature case. Comparing with numerically exact results, we show that our theory is accurate for slow baths and up to intermediate system-bath coupling strengths.
View Article and Find Full Text PDFThe photosynthetic apparatus of plants is a robust self-adjustable molecular system, able to function efficiently under varying environmental conditions. Under strong sunlight, it switches into photoprotective mode to avoid overexcitation by safely dissipating the excess absorbed light energy via nonphotochemical quenching (NPQ). Unfortunately, heterogeneous organization and simultaneous occurrence of multiple processes within the thylakoid membrane impede the study of natural NPQ under in vivo conditions; thus, usually artificially prepared antennae have been studied instead.
View Article and Find Full Text PDFDetailed studies of the excitation dynamics in photosynthetic pigment-proteins require an application of a wide range of spectroscopic methods. From the later part of the previous century, pump-probe and time-resolved fluorescence spectroscopy provided an impressive amount of information. Being simple to grasp, these methods are well-understood and widely used by the photosynthesis research community.
View Article and Find Full Text PDFAccurate simulations of open quantum system dynamics is a long standing issue in the field of chemical physics. Exact methods exist, but are costly, while perturbative methods are limited in their applicability. Recently a new black-box type method, called transfer tensor method (TTM), was proposed [J.
View Article and Find Full Text PDFThis study investigates signals from sustained phonation and text-dependent speech modalities for Parkinson's disease screening. Phonation corresponds to the vowel /a/ voicing task and speech to the pronunciation of a short sentence in Lithuanian language. Signals were recorded through two channels simultaneously, namely, acoustic cardioid (AC) and smart phone (SP) microphones.
View Article and Find Full Text PDFPhotosystem II (PSII) is the only biological system capable of splitting water to molecular oxygen. Its reaction center (RC) is responsible for the primary charge separation that drives the water oxidation reaction. In this work, we revisit the spectroscopic properties of the PSII RC using the complex time-dependent Redfield (ctR) theory for optical lineshapes [A.
View Article and Find Full Text PDFNon-photochemical quenching (NPQ) is responsible for protecting the light-harvesting apparatus of plants from damage at high light conditions. Although it is agreed that the major part of NPQ, an energy-dependent quenching (qE), originates in the light-harvesting antenna, its exact mechanism is still debated. In our earlier work (Chmeliov et al.
View Article and Find Full Text PDFWe report 2D electronic spectroscopy on the photosystem II core complex (PSII CC) at 77 K under different polarization conditions. A global analysis of the high time-resolution 2D data shows rapid, sub-100 fs energy transfer within the PSII CC. It also reveals the 2D spectral signatures of slower energy equilibration processes occurring on several to hundreds of picosecond time scales that are consistent with previous work.
View Article and Find Full Text PDFThe photosynthetic apparatus of green plants is well known for its extremely high efficiency that allows them to operate under dim light conditions. On the other hand, intense sunlight may result in overexcitation of the light-harvesting antenna and the formation of reactive compounds capable of 'burning out' the whole photosynthetic unit. Non-photochemical quenching is a self-regulatory mechanism utilized by green plants on a molecular level that allows them to safely dissipate the detrimental excess excitation energy as heat.
View Article and Find Full Text PDF