Publications by authors named "Gely M"

We present an optomechanical method for locally measuring the rheological properties of complex fluids in the ultra-high frequency range (UHF). A mechanical disk of microscale volume is used as an oscillating probe that monitors a liquid at rest, while the oscillation is optomechanically transduced. An analytical model for fluid-structure interactions is used to deduce the rheological properties of the liquid.

View Article and Find Full Text PDF

Nonlinear damping, the change in damping rate with the amplitude of oscillations plays an important role in many electrical, mechanical and even biological oscillators. In novel technologies such as carbon nanotubes, graphene membranes or superconducting resonators, the origin of nonlinear damping is sometimes unclear. This presents a problem, as the damping rate is a key figure of merit in the application of these systems to extremely precise sensors or quantum computers.

View Article and Find Full Text PDF

We use electronic microwave control methods to implement addressed single-qubit gates with high speed and fidelity, for ^{43}Ca^{+} hyperfine "atomic clock" qubits in a cryogenic (100 K) surface trap. For a single qubit, we benchmark an error of 1.5×10^{-6} per Clifford gate (implemented using 600 ns π/2 pulses).

View Article and Find Full Text PDF

Atomic force microscopy (AFM) has been consistently supporting nanosciences and nanotechnologies for over 30 years and is used in many fields from condensed matter physics to biology. It enables the measurement of very weak forces at the nanoscale, thus elucidating the interactions at play in fundamental processes. Here, we leverage the combined benefits of micro/nanoelectromechanical systems and cavity optomechanics to fabricate a sensor for dynamic mode AFM at a frequency above 100 MHz.

View Article and Find Full Text PDF

Nanoelectromechanical resonators have been successfully used for a variety of sensing applications. Their extreme resolution comes from their small size, which strongly limits their capture area. This leads to a long analysis time and the requirement for large sample quantity.

View Article and Find Full Text PDF

Nanomechanical mass spectrometry has proven to be well suited for the analysis of high mass species such as viruses. Still, the use of one-dimensional devices such as vibrating beams forces a trade-off between analysis time and mass resolution. Complex readout schemes are also required to simultaneously monitor multiple resonance modes, which degrades resolution.

View Article and Find Full Text PDF

Atomic force spectroscopy and microscopy are invaluable tools to characterize nanostructures and biological systems. State-of-the-art experiments use resonant driving of mechanical probes, whose frequency reaches MHz in the fastest commercial instruments where cantilevers are driven at nanometer amplitude. Stiffer probes oscillating at tens of picometers provide a better access to short-range interactions, yielding images of molecular bonds, but they are little amenable to high-speed operation.

View Article and Find Full Text PDF

All-optical tuning of the resonance of an optical cavity is used to realise optical signal-processing including modulation, switching, and signal-routing. The tuning of optical resonance is dictated by the two primary effects induced by optical absorption: charge-carrier-generation and heat-generation. Since these two effects shift the resonance in opposite directions in a pure silicon-on-insulator (SOI) micro-ring resonator as well as in a graphene-on-SOI system, the efficiency and the dynamic range of all-optical resonance-tuning is limited.

View Article and Find Full Text PDF

Bats are the second most species-rich Mammalian order and provide a wide range of ecologically important and economically significant ecosystem services. Nipah virus is a zoonotic emerging infectious disease for which pteropodid bats have been identified as a natural reservoir. In Cambodia, Nipah virus circulation has been reported in , but little is known about the spatial distribution of the species and the associated implications for conservation and public health.

View Article and Find Full Text PDF

Detecting weak radio-frequency electromagnetic fields plays a crucial role in a wide range of fields, from radio astronomy to nuclear magnetic resonance imaging. In quantum optics, the ultimate limit of a weak field is a single photon. Detecting and manipulating single photons at megahertz frequencies presents a challenge because, even at cryogenic temperatures, thermal fluctuations are appreciable.

View Article and Find Full Text PDF

Measurement of the mass of particles in the mega- to gigadalton range is challenging with conventional mass spectrometry. Although this mass range appears optimal for nanomechanical resonators, nanomechanical mass spectrometers often suffer from prohibitive sample loss, extended analysis time, or inadequate resolution. We report on a system architecture combining nebulization of the analytes from solution, their efficient transfer and focusing without relying on electromagnetic fields, and the mass measurements of individual particles using nanomechanical resonator arrays.

View Article and Find Full Text PDF

One of the main challenges to overcome to perform nanomechanical mass spectrometry analysis in a practical time frame stems from the size mismatch between the analyte beam and the small nanomechanical detector area. We report here the demonstration of mass spectrometry with arrays of 20 multiplexed nanomechanical resonators; each resonator is designed with a distinct resonance frequency which becomes its individual address. Mass spectra of metallic aggregates in the MDa range are acquired with more than one order of magnitude improvement in analysis time compared to individual resonators.

View Article and Find Full Text PDF

Rift Valley fever (RVF), a mosquito-borne disease affecting ruminants and humans, is one of the most important viral zoonoses in Africa. The objective of the present study was to develop a geographic knowledge-based method to map the areas suitable for RVF amplification and RVF spread in four East African countries, namely, Kenya, Tanzania, Uganda and Ethiopia, and to assess the predictive accuracy of the model using livestock outbreak data from Kenya and Tanzania. Risk factors and their relative importance regarding RVF amplification and spread were identified from a literature review.

View Article and Find Full Text PDF

Hyalomma ticks can transmit several human and animal pathogens in Eurasia and Africa. Interest in Hyalomma marginatum has increased since the recent (re)emergence of Crimean-Congo Hemorrhagic fever in the Palearctic region. Until now, continental France has been considered free of this tick species.

View Article and Find Full Text PDF

The immunity profile against H5N1 highly pathogenic avian influenza (HPAI) in the commercial poultry value chain network in Egypt was modeled with the use of different vaccination scenarios. The model estimated the vaccination coverage, the protective seroconversion level, and the duration of immunity for each node of the network and vaccination scenario. Partial budget analysis was used to compare the benefit-cost of the different vaccination scenarios.

View Article and Find Full Text PDF

Frequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest.

View Article and Find Full Text PDF

While swine production is rapidly growing in South-East Asia, the structure of the swine industry and the dynamic of pig movements have not been well-studied. However, this knowledge is a prerequisite for understanding the dynamic of disease transmission in swine populations and designing cost-effective surveillance strategies for infectious diseases. In this study, we assessed the farming and trading practices in the Vietnamese swine familial farming sector, which accounts for most pigs in Vietnam, and for which disease surveillance is a major challenge.

View Article and Find Full Text PDF

Rift Valley fever (RVF) is a severe mosquito-borne disease that is caused by a Phlebovirus (Bunyaviridae) and affects domestic ruminants and humans. Recently, its distribution widened, threatening Europe. The probability of the introduction and large-scale spread of Rift Valley fever virus (RVFV) in Europe is low, but localized RVF outbreaks may occur in areas where populations of ruminants and potential vectors are present.

View Article and Find Full Text PDF

A revision of the clinical assessment system of the University of Puerto Rico School of Dental Medicine was initiated in 2007, with the goal of achieving a system that would be fully understood and used by both faculty and students to improve student performance throughout the curriculum. The transformation process was organized according to Kotter's Eight-Step Change Model. Some of the initial findings in 2007 were as follows: 87 percent of current daily clinical evaluations were scored at the scale's highest level, 33 percent of faculty members lacked knowledge of the evaluation system, and 60 percent of students reported that faculty members were not well calibrated.

View Article and Find Full Text PDF

Background: Chickens represent an important animal genetic resource and the conservation of local breeds is an issue for the preservation of this resource. The genetic diversity of a breed is mainly evaluated through its nuclear diversity. However, nuclear genetic diversity does not provide the same information as mitochondrial genetic diversity.

View Article and Find Full Text PDF