Anodic oxidation is a technique widely used to improve the bioactivity of Ti surface. In this study, micro-arc oxidation (MAO) was used to obtain an anodic film incorporating Ca and P ions to evaluate the effect of heat and hydrothermal treatment on the mechanical and in vitro bioactivity properties of these new layers. The MAO process was carried out using (CH3COO)2Ca·H2O and NaH2PO4·2H2O electrolytes under galvanostatic mode (150mA/cm(2)).
View Article and Find Full Text PDFThe combination of shot blasting (SB) and micro-arc oxidation (or anodic oxidation--AO) in titanium surfaces was shown to provide enhanced conditions for cell differentiation and osseointegration than those provided by SB or AO alone. This study associated both methods aiming to attain titania layers on Ti with adequate tribo-mechanical features for bone implants. SB was performed using alumina particles, and titania layers were grown by AO using a CaP-based electrolyte.
View Article and Find Full Text PDFRough and porous titanium oxide layers, which are important features for improving the osseointegration of Ti implants with bone tissues, are obtained through the technique of anodic oxidation. The thicknesses of such coatings are typically in the order of micrometers, and their mechanical characterization can be assessed by instrumented indentation, provided that the composite nature of the surface is considered. Titania anodic layers were produced on Ti under galvanostatic mode using Ca-P-based electrolytes (a mixture of (CH3COO)2Ca⋅H2O and NaH2PO(4)⋅2H2O), employing current densities (J) of 150 mA/cm2 and 300 mA/cm2.
View Article and Find Full Text PDFAlkali-heat treatment (AHT) is a simple and practical method to make titanium surfaces bioactive. Hydroxyapatite nucleates on Ti when in contact with body fluids due to the presence of a thin sodium titanate film produced by the AHT. This method was proposed more than a decade ago and it has been widely investigated at varied scopes.
View Article and Find Full Text PDF