Publications by authors named "Gelmires de Araujo Neves"

The use of industrial residues in civil construction is an exciting alternative to mitigate environmental impacts and promote the circular economy. This work developed new compositions of geopolymer mortars activated by NaOH from fine kaolin residue (RCF), coarse kaolin residue (RCG) and granite (RG). All residues were benefited and characterized by chemical analysis (X-ray fluorescence), mineralogical phases (X-ray diffraction) and granulometry (laser granulometry).

View Article and Find Full Text PDF

This work presents the successful production of highly porous 3D nanofibrous hybrid scaffolds of polylactic acid (PLA)/polyethylene glycol (PEG) blends with the incorporation of calcium phosphate (CaP) bioceramics by a facile two-step process using the solution blow spinning (SBS) technique. CaP nanofibers were obtained at two calcium/phosphorus (Ca/P) ratios, 1.67 and 1.

View Article and Find Full Text PDF

Industrial effluents, especially those containing dyes, have become the main cause of contamination of water resources. In this context, Brazilian bentonite/MgO composites, with excellent adsorptive properties, were prepared and investigated for their effectiveness in removing cationic and anionic dyes from aqueous solutions. The new adsorbents were obtained using Brazilian bentonites and MgO using the mechanochemical method followed by heat treatment (at 700 °C for 4 h).

View Article and Find Full Text PDF

Molybdenum trioxide is an abundant natural, low-cost, and environmentally friendly material that has gained considerable attention from many researchers in a variety of high-impact applications. It is an attractive inorganic oxide that has been widely studied because of its layered structure, which results in intercalation ability through tetrahedral/octahedral holes and extension channels and leads to superior charge transfer. Shape-related properties such as high specific capacities, the presence of exposed active sites on the oxygen-rich structure, and its natural tendency to oxygen vacancy that leads to a high ionic conductivity are also attractive to technological applications.

View Article and Find Full Text PDF

The mechanical and wear behavior of CrN/CrAlN multilayers were improved by tailoring the experimental conditions of a hybrid magnetron sputtering process based on a high-power impulse (HiPIMS) and two direct current magnetron sputtering (dcMS) power supplies. To this end, the influence of the base layer and of the combination of Cr and CrAl targets, which were switched to the dcMS and HiPIMS power supplies in different configurations, were investigated with respect to the growth of ceramic CrN/CrAlN multilayers onto commercial gas-nitrided diesel piston rings. The microstructure, grain morphology, and mechanical properties were evaluated by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and instrumented nanoindentation.

View Article and Find Full Text PDF

The high-power impulse magnetron sputtering (HiPIMS) technique was applied to deposit multilayer-like (Cr, Y)N coatings on AISI 304L stainless steel, using pendular substrate oscillation and a Cr-Y target and varying the nitrogen flow rate from 10 to 50 sccm. The microstructure, mechanical and tribological properties were investigated by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, instrumented nano-hardness, and wear tests. The columnar grain structure became highly segmented and nanosized due to pendular substrate oscillation and the addition of yttrium.

View Article and Find Full Text PDF

Waste rock from bentonite mining (WRBM) was evaluated as potential adsorbents for removing crystal violet (CV) and methylene blue (MB) cationic dyes from contaminated water. The waste samples (AM01, AM02, and AM03) were collected from different locations of the bentonite mine and characterized through X-ray diffraction, X-ray fluorescence, Fourier-transform infrared spectroscopy, N adsorption/desorption, and cation exchange capacity. The adsorption efficiency of CV and MB dyes was investigated through the effect of initial concentration, contact time, pH, the dosage of adsorbent, and temperature.

View Article and Find Full Text PDF

Ceramic nanofibers have been shown to be a new horizon of research in the biomedical area, due to their differentiated morphology, nanoroughness, nanotopography, wettability, bioactivity, and chemical functionalization properties. Therefore, considering the impact caused by the use of these nanofibers, and the fact that there are still limited data available in the literature addressing the ceramic nanofiber application in regenerative medicine, this review article aims to gather the state-of-the-art research concerning these materials, for potential use as a biomaterial for wound healing and bone regeneration, and to analyze their characteristics when considering their application.

View Article and Find Full Text PDF

A hybrid magnetron sputtering process (dcMS/HiPIMS) was developed to manufacture nanostructured CrN/CrAlN multilayers, motivated by improving the low-emission efficiency when applied on gas-nitrided diesel piston rings of a next-generation of combustion engines. In order to improve the mechanical, tribological, and corrosion behavior of the multilayers, the hybrid dcMS/HiPIMS process was designed by selecting the optimal sputtering procedure applied to AISI 440 base steel. The effect of substrate bias and carousel rotational speed on the phase composition, crystallographic texture, residual stresses, surface roughness, coating periodicity and densification, instrumented hardness, elastic modulus, as well as wear and corrosion resistance was determined.

View Article and Find Full Text PDF

Mineralogical and technological characterization of ceramic raw materials from a new deposit located at Caxias city, Maranhão State-Brazil, was accomplished to determine their potential as raw materials for the ceramics industry in northeastern Brazil. The ceramic raw materials were collected from three different locations on the site and characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), differential thermal analysis (DTA), and thermogravimetry (TG). The XRF analysis of the fraction < 2 μm revealed that most samples had SiO (35-51 wt%), AlO (19-29 wt%), FeO (2-21 wt%), MgO (0.

View Article and Find Full Text PDF

The physical properties of porous silica nanofibers are an important factor that impacts their performance in various applications. In this study, porous silica nanofibers were produced via solution blow spinning (SBS) from a silica precursor/polymer solution. Two polyvinylpyrrolidone (PVP, M = 360,000 and 1,300,000) were chosen as spinning aids in order to create different pore properties.

View Article and Find Full Text PDF

The development of alternatives for wear protection in surface engineering can be responsible for a significant decrease in energy waste as a large amount of the energy produced in the world is lost due to tribological contact. Dynamic Glancing Angle Deposition has been recently evaluated as a route to produce coatings with improved wear performance. In this technique, the substrate oscillates along with a determined range in front of the sputtering target during the growth of the film.

View Article and Find Full Text PDF

New ceramic formulations based on scheelite tailing were developed, and their potential in the ceramic industry was evaluated. Green bodies with different contents of scheelite tailing (0-8 wt%) were sintered (1150 °C, 1200 °C, and 1250 °C) and characterized in terms of the main mineralogical phases, microstructure, and physico-mechanical properties. The mullite was the main phase identified in all sintered temperatures.

View Article and Find Full Text PDF

Chitosan, derived from chitin, is a biopolymer consisting of arbitrarily distributed β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine that exhibits outstanding properties- biocompatibility, biodegradability, non-toxicity, antibacterial activity, the capacity to form films, and chelating of metal ions. Most of these peculiar properties are attributed to the presence of free protonable amino groups along the chitosan backbone, which also gives it solubility in acidic conditions. Moreover, this biopolymer can also be physically modified, thereby presenting a variety of forms to be developed.

View Article and Find Full Text PDF

Multilayer-like CrN and CrAlN coatings with different Al contents were deposited onto a stainless steel substrate using dynamic glancing angle deposition direct current magnetron sputtering (DGLAD dcMS) in a N rich atmosphere to understand the role of Al on the growth of the films and mechanical properties of the nitrides with a multilayer architecture. Chemical analysis by means of energy dispersive analysis (EDS) and glow discharge optical emission spectroscopy (GDOES) depth profiling revealed that while CrN samples were close to stoichiometric, the CrAlN coatings presented excess N between 70 and 80% at. An expressive change in texture was observed as the CrN coating changed its preferred orientation from (111) to (200) with the addition of Al, followed by a modification in morphology from grains with faceted pyramidal tops in CrN to dome-shaped grains in CrAlN coatings.

View Article and Find Full Text PDF

The efficiency of acid treatment on natural calcium bentonite (natural bentonite) for anionic dye adsorption was investigated using methyl orange (MO) as a probe. Additionally, adsorption experiments were accomplished between the natural bentonite, acidified bentonite, and a cationic dye (methylene blue, MB). Acid functionalization in natural bentonite (RF) was carried out with HCl and HSO acids (RF1 and RF2, respectively).

View Article and Find Full Text PDF

A stable moisturizing cosmetic emulsion was developed from babassu nut oil and high concentrations of sunscreens. Babassu nut oil was chosen because within the laboratory time-scale, this vegetable oil showed stable physicochemical properties (relative density, acidity index, and refracted index) and a good ratio between lauric and myristic fatty acids. The presence of these saturated fatty acids can confer specific activities to the cosmetic emulsion, such as antiviral, bactericidal, and anti-inflammatory activity.

View Article and Find Full Text PDF