Publications by authors named "Geli M"

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Cholesterol is a fundamental component of cellular membranes, and its organization, distribution, and recycling are tightly regulated. Cholesterol can form, together with other lipids and proteins, membrane nanodomains, which play important roles in membrane trafficking, the spatiotemporal organization of signal transduction, or the modulation of plasma membrane transporters, among others. Not surprisingly then, the misregulation of cholesterol biosynthetic and transport pathways has been related to numerous diseases, including neurodegenerative and metabolic disorders.

View Article and Find Full Text PDF

Clathrin-mediated endocytosis (CME) is an essential cellular process, conserved among eukaryotes. Yeast constitutes a powerful genetic model to dissect the complex endocytic machinery, yet there is a lack of specific pharmacological agents to interfere with CME in these organisms. TL2 is a light-regulated peptide inhibitor targeting the AP2-β-adaptin/β-arrestin interaction and that can photocontrol CME with high spatiotemporal precision in mammalian cells.

View Article and Find Full Text PDF

As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nanoscale topography. Here, we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nanoscale deformations.

View Article and Find Full Text PDF

Kazrin is a protein widely expressed in vertebrates whose depletion causes a myriad of developmental defects, in part derived from altered cell adhesion and migration, as well as failure to undergo epidermal to mesenchymal transition. However, the primary molecular role of kazrin, which might contribute to all these functions, has not been elucidated yet. We previously identified one of its isoforms, kazrin C, as a protein that potently inhibits clathrin-mediated endocytosis when overexpressed.

View Article and Find Full Text PDF

Cell polarity and morphogenesis are regulated by the small GTPase Cdc42. Even though major advances have been done in the field during the last years, the molecular details leading to its activation in particular cellular contexts are not completely understood. In fission yeast, the β(1,3)-glucanase Eng2 is a "moonlighting protein" with a dual function, acting as a hydrolase during spore dehiscence, and as component of the endocytic machinery in vegetative cells.

View Article and Find Full Text PDF

Sterols are unevenly distributed within cellular membranes. How their biosynthetic and transport machineries are organized to generate heterogeneity is largely unknown. We previously showed that the yeast sterol transporter Osh2 is recruited to endoplasmic reticulum (ER)-endocytic contacts to facilitate actin polymerization.

View Article and Find Full Text PDF

Objectives: Generation and dissemination of knowledge is a relevant challenge of palliative care (PC). The Chair Catalan Institute of Oncology (ICO)/University of Vic (UVIC) of Palliative Care (CPC) was founded in 2012, as a joint project of the ICO and the University of Vic/Central of Catalonia to promote the development of PC with public health and community-oriented vision and academic perspectives. The initiative brought together professionals from a wide range of disciplines (PC, geriatrics, oncology, primary care and policy) and became the first chair of PC in Spain.

View Article and Find Full Text PDF

Oxysterol binding protein-related proteins (ORPs) are conserved lipid binding polypeptides, enriched at ER contacts sites. ORPs promote non-vesicular lipid transport and work as lipid sensors in the context of many cellular tasks, but the determinants of their distinct localization and function are not understood. Here, we demonstrate that the yeast endocytic invaginations associate with the ER and that this association specifically requires the ORPs Osh2 and Osh3, which bridge the endocytic myosin-I Myo5 to the ER integral-membrane VAMP-associated protein (VAP) Scs2.

View Article and Find Full Text PDF

Proper endosomal trafficking of ligand-activated G-protein-coupled receptors (GPCRs) is essential to spatiotemporally tune their physiological responses. For the monocyte chemoattractant receptor 2 (CCR2B; one of two isoforms encoded by CCR2), endocytic recycling is important to sustain monocyte migration, whereas filamin A (FLNa) is essential for CCL2-induced monocyte migration. Here, we analyze the role of FLNa in the trafficking of CCR2B along the endocytic pathway.

View Article and Find Full Text PDF

Anaphase chromatin bridges can lead to chromosome breakage if not properly resolved before completion of cytokinesis. The NoCut checkpoint, which depends on Aurora B at the spindle midzone, delays abscission in response to chromosome segregation defects in yeast and animal cells. How chromatin bridges are detected, and whether abscission inhibition prevents their damage, remain key unresolved questions.

View Article and Find Full Text PDF

A transient burst of actin polymerization assists endocytic budding. How actin polymerization is controlled in this context is not understood. Here, we show that crosstalk between PI(4,5)P₂and the CK2 catalytic subunit Cka2 controls actin polymerization at endocytic sites.

View Article and Find Full Text PDF

Eng2 is a glucanase required for spore release, although it is also expressed during vegetative growth, suggesting that it might play other cellular functions. Its homology to the Saccharomyces cerevisiae Acf2 protein, previously shown to promote actin polymerization at endocytic sites in vitro, prompted us to investigate its role in endocytosis. Interestingly, depletion of Eng2 caused profound defects in endocytic uptake, which were not due to the absence of its glucanase activity.

View Article and Find Full Text PDF

Endocytic budding implies the remodeling of a plasma membrane portion from a flat sheet to a closed vesicle. Clathrin- and actin-mediated endocytosis in yeast has proven a very powerful model to study this process, with more than 60 evolutionarily conserved proteins involved in fashioning primary endocytic vesicles. Major progress in the field has been made during the last decades by defining the sequential recruitment of the endocytic machinery at the cell cortex using live-cell fluorescence microscopy.

View Article and Find Full Text PDF

Lipid droplets (LDs) are dynamic organelles that collect, store, and supply lipids [1]. LDs have a central role in the exchange of lipids occurring between the cell and the environment and provide cells with substrates for energy metabolism, membrane synthesis, and production of lipid-derived molecules such as lipoproteins or hormones. However, lipid-derived metabolites also cause progressive lipotoxicity [2], accumulation of reactive oxygen species (ROS), endoplasmic reticulum stress, mitochondrial malfunctioning, and cell death [2].

View Article and Find Full Text PDF

Fluorescence live-cell imaging has temporally resolved the conserved choreography of more than 30 proteins involved in clathrin and actin-mediated endocytic budding from the plasma membrane. However, the resolution of these studies is insufficient to unveil how the endocytic machinery actually drives membrane deformation in vivo. In this study, we use quantitative immuno-EM to introduce the temporal dimension to the ultrastructural analysis of membrane budding and define changes in the topography of the lipid bilayer coupled to the dynamics of endocytic proteins with unprecedented spatiotemporal resolution.

View Article and Find Full Text PDF

Myosins-I are widely expressed actin-dependent motors which bear a phospholipid-binding domain. In addition, some members of the family can trigger Arp2/3 complex (actin-related protein 2/3 complex)-dependent actin polymerization. In the early 1990s, the development of powerful genetic tools in protozoa and mammals and discovery of these motors in yeast allowed the demonstration of their roles in membrane traffic along the endocytic and secretory pathways, in vacuole contraction, in cell motility and in mechanosensing.

View Article and Find Full Text PDF

Myosins-I are conserved proteins that bear an N-terminal motor head followed by a Tail Homology 1 (TH1) lipid-binding domain. Some myosins-I have an additional C-terminal extension (C(ext)) that promotes Arp2/3 complex-dependent actin polymerization. The head and the tail are separated by a neck that binds calmodulin or calmodulin-related light chains.

View Article and Find Full Text PDF

Clathrin is involved in vesicle formation in the trans-Golgi network (TGN)/endosomal system and during endocytosis. Clathrin recruitment to membranes is mediated by the clathrin heavy chain (HC) N-terminal domain (TD), which forms a seven-bladed beta-propeller. TD binds membrane-associated adaptors, which have short peptide motifs, either the clathrin-box (CBM) and/or the W-box; however, the importance of the TD binding sites for these motifs has not been tested in vivo.

View Article and Find Full Text PDF

Genetic analysis of endocytosis in yeast early pointed to the essential role of actin in the uptake step. Efforts to identify the machinery involved demonstrated the important contribution of Arp2/3 and the myosins-I. Analysis of the process using live-cell fluorescence microscopy and electron microscopy have recently contributed to refine molecular models explaining clathrin and actin-dependent endocytic uptake.

View Article and Find Full Text PDF

Endocytosis in yeast requires actin and clathrin. Live cell imaging has previously shown that massive actin polymerization occurs concomitant with a slow 200-nm inward movement of the endocytic coat (Kaksonen, M., Y.

View Article and Find Full Text PDF

The cytoskeleton provides the backbone structure for the cellular organization, determining, in particular, the cellular mechanical properties. These are important factors in many biological processes, as, for instance, the metastatic process of malignant cells. In this paper, we demonstrate the possibility of monitoring the cytoskeleton structural transformations in optically trapped yeast cells (Saccharomyces cerevisiae) by tracking the forward scattered light via a quadrant photodiode.

View Article and Find Full Text PDF

Since 1990, a wide range of palliative care services has been implemented throughout the Catalan Health Care System. In 2005, 21,400 patients received palliative care; 59% had cancer (79.4% of all cancer patients) and 41% had other noncancer diagnoses (25.

View Article and Find Full Text PDF

Clathrin-mediated endocytosis is a major pathway for uptake of lipid and protein cargo at the plasma membrane. The lattices of clathrin-coated pits and vesicles are comprised of triskelions, each consisting of three oligomerized heavy chains (HC) bound by a light chain (LC). In addition to binding HC, LC interacts with members of the Hip1/R family of endocytic proteins, including the budding yeast homologue, Sla2p.

View Article and Find Full Text PDF