Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications.
View Article and Find Full Text PDFFront Cell Neurosci
August 2019
Spinal cord injury (SCI) is a devastating neurological disorder that damages motor, sensory, and autonomic pathways. Recent advances in stem cell therapy have allowed for the generation of motor neurons (MNs) showing electrophysiological and synaptic activity, expression of canonical MN biomarkers, and the ability to graft into spinal lesions. Clinical translation, especially the transplantation of MN precursors in spinal lesions, has thus far been elusive because of stem cell heterogeneity and protocol variability, as well as a hostile microenvironment such as inflammation and scarring, which yield inconsistent pre-clinical results without a consensus best-practice therapeutic strategy.
View Article and Find Full Text PDFCombined cell and gene-based therapeutic strategies offer potential in the treatment of neurodegenerative and psychiatric conditions that have been associated with structural brain disturbances. In the present investigation, we used a novel virus-free re-programming method to generate induced pluripotent stem cells (iPSCs), and then subsequently transformed these cells into neural cells which over-expressed brain derived neurotrophic factor (BDNF). Importantly, the infusion of iPSC derived neural cells (as a cell replacement and gene delivery tool) and BDNF (as a protective factor) influenced neuronal outcomes.
View Article and Find Full Text PDFBackground: Atrial fibrillation (AF) is the most common sustained arrhythmia observed in otherwise healthy individuals. Most lone AF cases are nonfamilial, leading to the assumption that a primary genetic origin is unlikely. In this study, we provide data supporting a novel paradigm that atrial tissue-specific genetic defects may be associated with sporadic cases of lone AF.
View Article and Find Full Text PDFGenetic mutations of the cardiac sodium channel (SCN5A) specific only to the phenotype of atrial fibrillation have recently been described. However, data on the biophysical properties of SCN5A variants associated with atrial fibrillation are scarce. In a mother and son with lone atrial fibrillation, we identified a novel SCN5A coding variant, K1493R, which altered a highly conserved residue in the DIII-IV linker and was located six amino acids downstream from the fast inactivation motif of sodium channels.
View Article and Find Full Text PDFSeveral contaminants detected in aquatic ecosystems are agonists of peroxisome proliferator-activated receptors (PPARs). Peroxisome proliferator-activated receptors interact with the retinoid X receptor (RXR) to activate the transcription of genes that control a variety of physiological functions. We cloned and sequenced partial cDNA fragments of rainbow trout (Oncorhynchus mykiss) PPARalpha and PPARbeta from rainbow trout (rt) gill-W1 cells, a cell line derived from rainbow trout gills; predicted amino acid identities are 77% and 82% compared with their respective human homologs and 83 to 88% and 91 to 98% identical to fish homologs.
View Article and Find Full Text PDFDiacylglycerol (DAG) and ceramide are important second messengers affecting cell growth, differentiation, and apoptosis. Balb/c-3T3 fibroblast cells expressing dopamine-D2S (short) receptors (Balb-D2S cells) provide a model of G protein-mediated cell growth and transformation. In Balb-D2S cells, apomorphine (EC(50) = 10 nM) stimulated DAG and ceramide formation by 5.
View Article and Find Full Text PDFGrowth hormone (GH) secretion is regulated by indirect negative feedback mechanisms. To address whether GH has direct actions on pituitary cells, lipid signaling in GH(4)ZR(7) somatomammotroph cells was examined. GH (EC(50) = 5 nm) stimulated diacylglycerol (DAG) and ceramide formation in parallel by over 10-fold within 15 min and persisting for >3 h.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2002
Bradykinin (BK), a proinflammatory factor and vasodilator, causes functional change of the small artery. However, it is not clear whether any of these changes induced by BK are mediated by N-acetyl-D-sphingosine (ceramide). Therefore, we investigated whether BK affects the hydrolysis of sphingomyelin and generation of ceramide in the intact rat small artery.
View Article and Find Full Text PDF