Phys Rev Lett
February 2004
Using symmetric 112Sn+112Sn, 124Sn+124Sn collisions as references, we probe isospin diffusion in peripheral asymmetric 112Sn+124Sn, 124Sn+112Sn systems at an incident energy of E/A=50 MeV. Isoscaling analyses imply that the quasiprojectile and quasitarget in these collisions do not achieve isospin equilibrium, permitting an assessment of isospin transport rates. We find that comparisons between isospin sensitive experimental and theoretical observables, using suitably chosen scaled ratios, permit investigation of the density dependence of the asymmetry term of the nuclear equation of state.
View Article and Find Full Text PDFA three parameter scaling relationship between isotopic distributions for elements with Z< or =8 has been observed. This allows a simple description of the dependence of such distributions on the overall isospin of the system. This scaling law (termed isoscaling) applies for a variety of reaction mechanisms that are dominated by phase space, including evaporation, multifragmentation, and deeply inelastic scattering.
View Article and Find Full Text PDFIsotopic distributions for light particles and intermediate mass fragments have been measured for 112Sn+112Sn, 112Sn+124Sn, 124Sn+112Sn, and 124Sn+124Sn collisions at E/A = 50 MeV. Isotope, isotone, and isobar yield ratios are utilized to estimate the isotopic composition of the gas phase at freeze-out. Analyses within the equilibrium limit imply that the gas phase is enriched in neutrons relative to the liquid phase represented by bound nuclei.
View Article and Find Full Text PDFPhys Rev C Nucl Phys
August 1996
Phys Rev C Nucl Phys
November 1995